Skip to main content
Top
Published in: Clinical & Experimental Metastasis 4/2013

01-04-2013 | Research Paper

Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts

Authors: Ashwani Khurana, Deok Jung-Beom, Xiaoping He, Sung-Hoon Kim, Robert C. Busby, Laura Lorenzon, Massimo Villa, Alfonso Baldi, Julian Molina, Matthew P. Goetz, Viji Shridhar

Published in: Clinical & Experimental Metastasis | Issue 4/2013

Login to get access

Abstract

Sulfatase 2 (Sulf-2) has been previously shown to be upregulated in breast cancer. Sulf-2 removes sulfate moieties on heparan sulfate proteoglycans which in turn modulate heparin binding growth factor signaling. Here we report that matrix detachment resulted in decreased Sulf-2 expression in breast cancer cells and increased cleavage of poly ADP-ribose polymerase. Silencing of Sulf-2 promotes matrix detachment induced cell death in MCF10DCIS cells. In an attempt to identify Sulf-2 specific inhibitor, we found that proteasomal inhibitors such as MG132, Lactacystin and Bortezomib treatment abolished Sulf-2 expression in multiple breast cancer cell lines. Additionally, we show that Bortezomib treatment of MCF10DCIS cell xenografts in mouse mammary fat pads significantly reduced tumor size, caused massive apoptosis and more importantly reduced Sulf-2 levels in vivo. Finally, our immunohistochemistry analysis of Sulf-2 expression in cohort of patient derived breast tumors indicates that Sulf-2 is significantly upregulated in autologous metastatic lesions compared to primary tumors (p < 0.037, Pearson correlation, Chi-Square analysis). In all, our data suggest that Sulf-2 might play an important role in breast cancer progression from ductal carcinoma in situ into an invasive ductal carcinoma potentially by resisting cell death.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRef Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMedCrossRef
2.
go back to reference Chua CC, Rahimi N, Forsten-Williams K et al (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94(3):316–323PubMedCrossRef Chua CC, Rahimi N, Forsten-Williams K et al (2004) Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ Res 94(3):316–323PubMedCrossRef
3.
go back to reference Morimoto-Tomita M, Uchimura K, Werb Z et al (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277(51):49175–49185PubMedCrossRef Morimoto-Tomita M, Uchimura K, Werb Z et al (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277(51):49175–49185PubMedCrossRef
4.
go back to reference Morimoto-Tomita M, Uchimura K, Bistrup A et al (2005) Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 7(11):1001–1010PubMedCrossRef Morimoto-Tomita M, Uchimura K, Bistrup A et al (2005) Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 7(11):1001–1010PubMedCrossRef
5.
go back to reference Peterson SM, Iskenderian A, Cook L et al (2010) Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts. BMC cancer 10:427PubMedCrossRef Peterson SM, Iskenderian A, Cook L et al (2010) Human Sulfatase 2 inhibits in vivo tumor growth of MDA-MB-231 human breast cancer xenografts. BMC cancer 10:427PubMedCrossRef
6.
go back to reference Khurana A, Liu P, Mellone P et al (2011) HSulf-1 modulates FGF2- and hypoxia-mediated migration and invasion of breast cancer cells. Cancer Res 71(6):2152–2161PubMedCrossRef Khurana A, Liu P, Mellone P et al (2011) HSulf-1 modulates FGF2- and hypoxia-mediated migration and invasion of breast cancer cells. Cancer Res 71(6):2152–2161PubMedCrossRef
7.
go back to reference Sabe H (2011) Cancer early dissemination: cancerous epithelial-mesenchymal transdifferentiation and transforming growth factor beta signalling. J Biochem 149(6):633–639PubMedCrossRef Sabe H (2011) Cancer early dissemination: cancerous epithelial-mesenchymal transdifferentiation and transforming growth factor beta signalling. J Biochem 149(6):633–639PubMedCrossRef
8.
go back to reference Tait LR, Pauley RJ, Santner SJ et al (2007) Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts. Int J Cancer 120(10):2127–2134PubMedCrossRef Tait LR, Pauley RJ, Santner SJ et al (2007) Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts. Int J Cancer 120(10):2127–2134PubMedCrossRef
9.
go back to reference Miller FR, Santner SJ, Tait L et al (2000) MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 92(14):1185–1186PubMedCrossRef Miller FR, Santner SJ, Tait L et al (2000) MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 92(14):1185–1186PubMedCrossRef
10.
go back to reference Nannuru KC, Futakuchi M, Varney ML et al (2010) Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-{beta} signaling at the tumor-bone interface. Cancer Res. doi:10.1158/0008-5472 Nannuru KC, Futakuchi M, Varney ML et al (2010) Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-{beta} signaling at the tumor-bone interface. Cancer Res. doi:10.​1158/​0008-5472
11.
go back to reference Stetler-Stevenson WG (2001) The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am 10(2):383–392PubMed Stetler-Stevenson WG (2001) The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am 10(2):383–392PubMed
12.
go back to reference Lai J, Chien J, Staub J et al (2003) Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem 278(25):23107–23117PubMedCrossRef Lai J, Chien J, Staub J et al (2003) Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem 278(25):23107–23117PubMedCrossRef
13.
go back to reference Narita K, Staub J, Chien J et al (2006) HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res 66(12):6025–6032PubMedCrossRef Narita K, Staub J, Chien J et al (2006) HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res 66(12):6025–6032PubMedCrossRef
14.
go back to reference Khurana A, Nakayama K, Williams S et al (2006) Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J Biol Chem 281(46):35316–35326PubMedCrossRef Khurana A, Nakayama K, Williams S et al (2006) Regulation of the ring finger E3 ligase Siah2 by p38 MAPK. J Biol Chem 281(46):35316–35326PubMedCrossRef
15.
go back to reference Khurana A, Tun HW, Marlow L et al (2011) Hypoxia negatively regulates heparan sulfatase 2 expression in renal cancer cell lines. Mol carcinog 51(7):565–575 Khurana A, Tun HW, Marlow L et al (2011) Hypoxia negatively regulates heparan sulfatase 2 expression in renal cancer cell lines. Mol carcinog 51(7):565–575
16.
go back to reference Khurana A, McKean H, Kim H et al (2012) Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo. Breast Cancer Res 14(2):R43PubMedCrossRef Khurana A, McKean H, Kim H et al (2012) Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo. Breast Cancer Res 14(2):R43PubMedCrossRef
17.
go back to reference Lai JP, Sandhu DS, Yu C et al (2008) Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47(4):1211–1222PubMedCrossRef Lai JP, Sandhu DS, Yu C et al (2008) Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47(4):1211–1222PubMedCrossRef
18.
go back to reference Shekhar MP, Tait L, Pauley RJ et al (2008) Comedo-ductal carcinoma in situ: a paradoxical role for programmed cell death. Cancer Biol Ther 7(11):1774–1782PubMedCrossRef Shekhar MP, Tait L, Pauley RJ et al (2008) Comedo-ductal carcinoma in situ: a paradoxical role for programmed cell death. Cancer Biol Ther 7(11):1774–1782PubMedCrossRef
19.
go back to reference Debnath J, Mills KR, Collins NL et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111(1):29–40PubMedCrossRef Debnath J, Mills KR, Collins NL et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111(1):29–40PubMedCrossRef
20.
go back to reference Reginato MJ, Mills KR, Paulus JK et al (2003) Integrins and EGFR coordinately regulate the pro-apoptotic protein bim to prevent anoikis. Nat Cell Biol 5(8):733–740PubMedCrossRef Reginato MJ, Mills KR, Paulus JK et al (2003) Integrins and EGFR coordinately regulate the pro-apoptotic protein bim to prevent anoikis. Nat Cell Biol 5(8):733–740PubMedCrossRef
21.
go back to reference Haenssen KK, Caldwell SA, Shahriari KS et al (2010) ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 123(Pt 8):1373–1382PubMedCrossRef Haenssen KK, Caldwell SA, Shahriari KS et al (2010) ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 123(Pt 8):1373–1382PubMedCrossRef
22.
go back to reference Powers GL, Ellison-Zelski SJ, Casa AJ et al (2010) Proteasome inhibition represses ERalpha gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 29(10):1509–1518PubMedCrossRef Powers GL, Ellison-Zelski SJ, Casa AJ et al (2010) Proteasome inhibition represses ERalpha gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 29(10):1509–1518PubMedCrossRef
23.
go back to reference Marx C, Yau C, Banwait S et al (2007) Proteasome-regulated ERBB2 and estrogen receptor pathways in breast cancer. Mol Pharmacol 71(6):1525–1534PubMedCrossRef Marx C, Yau C, Banwait S et al (2007) Proteasome-regulated ERBB2 and estrogen receptor pathways in breast cancer. Mol Pharmacol 71(6):1525–1534PubMedCrossRef
24.
go back to reference Marx C, Held JM, Gibson BW et al (2010) ErbB2 trafficking and degradation associated with K48 and K63 polyubiquitination. Cancer Res 70(9):3709–3717PubMedCrossRef Marx C, Held JM, Gibson BW et al (2010) ErbB2 trafficking and degradation associated with K48 and K63 polyubiquitination. Cancer Res 70(9):3709–3717PubMedCrossRef
25.
go back to reference Lorch JH, Thomas TO, Schmoll HJ (2007) Bortezomib inhibits cell–cell adhesion and cell migration and enhances epidermal growth factor receptor inhibitor-induced cell death in squamous cell cancer. Cancer Res 67(2):727–734PubMedCrossRef Lorch JH, Thomas TO, Schmoll HJ (2007) Bortezomib inhibits cell–cell adhesion and cell migration and enhances epidermal growth factor receptor inhibitor-induced cell death in squamous cell cancer. Cancer Res 67(2):727–734PubMedCrossRef
26.
go back to reference Jones MD, Liu JC, Barthel TK et al (2010) A proteasome inhibitor, bortezomib, inhibits breast cancer growth and reduces osteolysis by downregulating metastatic genes. Clin Cancer Res 16(20):4978–4989PubMedCrossRef Jones MD, Liu JC, Barthel TK et al (2010) A proteasome inhibitor, bortezomib, inhibits breast cancer growth and reduces osteolysis by downregulating metastatic genes. Clin Cancer Res 16(20):4978–4989PubMedCrossRef
27.
go back to reference Codony-Servat J, Tapia MA, Bosch M et al (2006) Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther 5(3):665–675PubMedCrossRef Codony-Servat J, Tapia MA, Bosch M et al (2006) Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther 5(3):665–675PubMedCrossRef
Metadata
Title
Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts
Authors
Ashwani Khurana
Deok Jung-Beom
Xiaoping He
Sung-Hoon Kim
Robert C. Busby
Laura Lorenzon
Massimo Villa
Alfonso Baldi
Julian Molina
Matthew P. Goetz
Viji Shridhar
Publication date
01-04-2013
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 4/2013
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-012-9546-5

Other articles of this Issue 4/2013

Clinical & Experimental Metastasis 4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine