Skip to main content
Top
Published in: Malaria Journal 1/2014

Open Access 01-12-2014 | Research

Mating competitiveness of sterile male Anopheles coluzzii in large cages

Authors: Hamidou Maïga, David Damiens, Abdoulaye Niang, Simon P Sawadogo, Omnia Fatherhaman, Rosemary S Lees, Olivier Roux, Roch K Dabiré, Georges A Ouédraogo, Fréderic Tripet, Abdoulaye Diabaté, Jeremie RL Gilles

Published in: Malaria Journal | Issue 1/2014

Login to get access

Abstract

Background

Understanding the factors that account for male mating competitiveness is critical to the development of the sterile insect technique (SIT). Here, the effects of partial sterilization with 90 Gy of radiation on sexual competitiveness of Anopheles coluzzii allowed to mate in different ratios of sterile to untreated males have been assessed. Moreover, competitiveness was compared between males allowed one versus two days of contact with females.

Methods

Sterile and untreated males four to six days of age were released in large cages (~1.75 sq m) with females of similar age at the following ratios of sterile males: untreated males: untreated virgin females: 100:100:100, 300:100:100, 500:100:100 (three replicates of each) and left for two days. Competitiveness was determined by assessing the egg hatch rate and the insemination rate, determined by dissecting recaptured females. An additional experiment was conducted with a ratio of 500:100:100 and a mating period of either one or two days. Two controls of 0:100:100 (untreated control) and 100:0:100 (sterile control) were used in each experiment.

Results

When males and females consort for two days with different ratios, a significant difference in insemination rate was observed between ratio treatments. The competitiveness index (C) of sterile males compared to controls was 0.53. The number of days of exposure to mates significantly increased the insemination rate, as did the increased number of males present in the untreated: sterile male ratio treatments, but the number of days of exposure did not have any effect on the hatch rate.

Discussion

The comparability of the hatch rates between experiments suggest that An. coluzzii mating competitiveness experiments in large cages could be run for one instead of two days, shortening the required length of the experiment. Sterilized males were half as competitive as untreated males, but an effective release ratio of at least five sterile for one untreated male has the potential to impact the fertility of a wild female population. However, further trials in field conditions with wild males and females should be undertaken to estimate the ratio of sterile males to wild males required to produce an effect on wild populations.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO: World Malaria Report 2013. 2013, Geneva: World Health Organization WHO: World Malaria Report 2013. 2013, Geneva: World Health Organization
2.
go back to reference Dabiré KR, Diabaté A, Namountougou M, Djogbenou L, Wondji C, Chandre F, Simard F, Ouédraogo JB, Martin T, Weill M, Baldet T: Trends in Insecticide Resistance in Natural Populations of Malaria Vectors in Burkina Faso, West Africa: 10 Years’ Surveys. Insecticides-Pest Engineering. Edited by: Perveen F. 2012, Croatia: InTech, 479-502. Dabiré KR, Diabaté A, Namountougou M, Djogbenou L, Wondji C, Chandre F, Simard F, Ouédraogo JB, Martin T, Weill M, Baldet T: Trends in Insecticide Resistance in Natural Populations of Malaria Vectors in Burkina Faso, West Africa: 10 Years’ Surveys. Insecticides-Pest Engineering. Edited by: Perveen F. 2012, Croatia: InTech, 479-502.
3.
go back to reference Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, Dabiré KR: Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS One. 2012, 7: e48412-10.1371/journal.pone.0048412.PubMedCentralCrossRefPubMed Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, Dabiré KR: Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa. PLoS One. 2012, 7: e48412-10.1371/journal.pone.0048412.PubMedCentralCrossRefPubMed
4.
go back to reference Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M: Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009, 8: 299-10.1186/1475-2875-8-299.PubMedCentralCrossRefPubMed Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M: Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009, 8: 299-10.1186/1475-2875-8-299.PubMedCentralCrossRefPubMed
5.
go back to reference Zaim M, Aitio A, Nakashima N: Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000, 14: 1-5. 10.1046/j.1365-2915.2000.00211.x.CrossRefPubMed Zaim M, Aitio A, Nakashima N: Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000, 14: 1-5. 10.1046/j.1365-2915.2000.00211.x.CrossRefPubMed
6.
go back to reference Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends Parasitol. 2011, 27: 91-98. 10.1016/j.pt.2010.08.004.CrossRefPubMed Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends Parasitol. 2011, 27: 91-98. 10.1016/j.pt.2010.08.004.CrossRefPubMed
7.
go back to reference Vreysen MJ, Robinson AS, Hendrichs J: Area-Wide Control of Insect Pests: From Research to Field Implementation. 2007, Netherlands: SpringerCrossRef Vreysen MJ, Robinson AS, Hendrichs J: Area-Wide Control of Insect Pests: From Research to Field Implementation. 2007, Netherlands: SpringerCrossRef
8.
go back to reference Knipling EF, Laven H, Craig GB, Pal R, Smith CN, Brown AWA: Genetic control of insects of public health importance. Bull World Health Organ. 1968, 38: 421-438.PubMedCentralPubMed Knipling EF, Laven H, Craig GB, Pal R, Smith CN, Brown AWA: Genetic control of insects of public health importance. Bull World Health Organ. 1968, 38: 421-438.PubMedCentralPubMed
9.
go back to reference Lindquist DA, Abusowa M, Klassen W: Eradication of the new World Screwworm from the Libyan Arab Jamahiriya. Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. Edited by: IAEA/FAO. 1993, Vienna, Austria: International Atomic Energy Agency (IAEA), 319-330. Lindquist DA, Abusowa M, Klassen W: Eradication of the new World Screwworm from the Libyan Arab Jamahiriya. Management of Insect Pests: Nuclear and Related Molecular and Genetic Techniques. Edited by: IAEA/FAO. 1993, Vienna, Austria: International Atomic Energy Agency (IAEA), 319-330.
10.
go back to reference Vargas RI, Whitehand L, Walsh WA, Spencer JP, Hsu C, Hsu CL: Aerial releases of sterile Mediterranean fruit fly (Diptera: Tephritidae) by helicopter: dispersal, recovery, and population suppression. J Econ Entomol. 1995, 88: 1279-1287.CrossRef Vargas RI, Whitehand L, Walsh WA, Spencer JP, Hsu C, Hsu CL: Aerial releases of sterile Mediterranean fruit fly (Diptera: Tephritidae) by helicopter: dispersal, recovery, and population suppression. J Econ Entomol. 1995, 88: 1279-1287.CrossRef
11.
go back to reference Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann HU: Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000, 93: 123-135. 10.1603/0022-0493-93.1.123.CrossRefPubMed Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann HU: Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000, 93: 123-135. 10.1603/0022-0493-93.1.123.CrossRefPubMed
12.
go back to reference Dame DA, Lofgren CS, Ford HR, Boston MD, Baldwin KF, Jeffery GM: Release of chemosterilized males for the control of Anopheles albimanus in El Salvador II. Methods of rearing, sterilization, and distribution. Am J Trop Med Hyg. 1974, 23: 282-287.PubMed Dame DA, Lofgren CS, Ford HR, Boston MD, Baldwin KF, Jeffery GM: Release of chemosterilized males for the control of Anopheles albimanus in El Salvador II. Methods of rearing, sterilization, and distribution. Am J Trop Med Hyg. 1974, 23: 282-287.PubMed
13.
go back to reference Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.CrossRefPubMed Benedict MQ, Robinson AS: The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol. 2003, 19: 349-355. 10.1016/S1471-4922(03)00144-2.CrossRefPubMed
14.
go back to reference Dame DA, Woodard DB, Ford HR, Weidhaas DE: Field behavior of sexually sterile Anopheles quadrimaculatus males. Mosq News. 1964, 24: 6-14. Dame DA, Woodard DB, Ford HR, Weidhaas DE: Field behavior of sexually sterile Anopheles quadrimaculatus males. Mosq News. 1964, 24: 6-14.
15.
go back to reference Knipling EF: Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955, 48: 459-469.CrossRef Knipling EF: Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol. 1955, 48: 459-469.CrossRef
16.
go back to reference Benedict MQ, Knols BGJ, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS: Colonisation and mass rearing: learning from others. Malar J. 2009, 8: S4-PubMedCentralCrossRefPubMed Benedict MQ, Knols BGJ, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS: Colonisation and mass rearing: learning from others. Malar J. 2009, 8: S4-PubMedCentralCrossRefPubMed
17.
go back to reference Andreasen MH, Curtis CF: Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005, 19: 238-244. 10.1111/j.1365-2915.2005.00565.x.CrossRefPubMed Andreasen MH, Curtis CF: Optimal life stage for radiation sterilization of Anopheles males and their fitness for release. Med Vet Entomol. 2005, 19: 238-244. 10.1111/j.1365-2915.2005.00565.x.CrossRefPubMed
18.
go back to reference Helinski MEH, Knols BG: The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio of mating competitiveness of the malaria mosquito Anopheles arabiensis Patton. Bull Entomol Res. 2009, 99: 317-322. 10.1017/S0007485308006354.CrossRefPubMed Helinski MEH, Knols BG: The influence of late-stage pupal irradiation and increased irradiated: un-irradiated male ratio of mating competitiveness of the malaria mosquito Anopheles arabiensis Patton. Bull Entomol Res. 2009, 99: 317-322. 10.1017/S0007485308006354.CrossRefPubMed
19.
go back to reference Yamada H, Vreysen MJ, Gilles JR, Munhenga G, Damiens DD: The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malar J. 2014, 13: 318-10.1186/1475-2875-13-318.PubMedCentralCrossRefPubMed Yamada H, Vreysen MJ, Gilles JR, Munhenga G, Damiens DD: The effects of genetic manipulation, dieldrin treatment and irradiation on the mating competitiveness of male Anopheles arabiensis in field cages. Malar J. 2014, 13: 318-10.1186/1475-2875-13-318.PubMedCentralCrossRefPubMed
20.
go back to reference Reisen WK: Lessons from the Past: Historical Studies by the University of Maryland and the University of California, Berkeley. Ecological Aspects for Application of Genetically Modified Mosquitoes. Edited by: Takken W, Scott TW. 2003, Wageningen: Kluwer Academic Publishers, Dordrecht, 25-32. Reisen WK: Lessons from the Past: Historical Studies by the University of Maryland and the University of California, Berkeley. Ecological Aspects for Application of Genetically Modified Mosquitoes. Edited by: Takken W, Scott TW. 2003, Wageningen: Kluwer Academic Publishers, Dordrecht, 25-32.
21.
go back to reference Paton D, Touré M, Sacko A, Coulibaly MB, Traoré SF, Tripet F: Genetic and Environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae sensu stricto. PLoS One. 2013, 8: e82631-10.1371/journal.pone.0082631.PubMedCentralCrossRefPubMed Paton D, Touré M, Sacko A, Coulibaly MB, Traoré SF, Tripet F: Genetic and Environmental factors associated with laboratory rearing affect survival and assortative mating but not overall mating success in Anopheles gambiae sensu stricto. PLoS One. 2013, 8: e82631-10.1371/journal.pone.0082631.PubMedCentralCrossRefPubMed
22.
go back to reference Madakacherry O, Lees RS, Gilles JRL: Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop. 2014, 132S: 124S-129S.CrossRef Madakacherry O, Lees RS, Gilles JRL: Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop. 2014, 132S: 124S-129S.CrossRef
23.
go back to reference Marchand RP: A new cage for observing mating behavior of wild Anopheles gambiae in the laboratory. J Am Mosq Control Assoc. 1985, 1: 234-236.PubMed Marchand RP: A new cage for observing mating behavior of wild Anopheles gambiae in the laboratory. J Am Mosq Control Assoc. 1985, 1: 234-236.PubMed
24.
go back to reference Helinski MEH, Parker AG, Knols BGJ: Radiation biology of mosquitoes. Malar J. 2009, 8: S2-CrossRef Helinski MEH, Parker AG, Knols BGJ: Radiation biology of mosquitoes. Malar J. 2009, 8: S2-CrossRef
25.
go back to reference Damiens D, Benedict MQ, Wille M, Gilles JRL: An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): Eat like a horse, a bird or a fish?. J Med Entomol. 2012, 49: 1001-1011. 10.1603/ME11289.CrossRefPubMed Damiens D, Benedict MQ, Wille M, Gilles JRL: An inexpensive and effective larval diet for Anopheles arabiensis (Diptera: Culicidae): Eat like a horse, a bird or a fish?. J Med Entomol. 2012, 49: 1001-1011. 10.1603/ME11289.CrossRefPubMed
26.
go back to reference Benedict MQ, Hood-Nowotny RC, Howell PI, Wilkins EE: Methylparaben in Anopheles gambiae s.l. sugar meals increases longevity and malaria oocyst abundance but is not a preferred diet. J Insect Physiol. 2009, 55: 197-204. 10.1016/j.jinsphys.2008.11.003.CrossRefPubMed Benedict MQ, Hood-Nowotny RC, Howell PI, Wilkins EE: Methylparaben in Anopheles gambiae s.l. sugar meals increases longevity and malaria oocyst abundance but is not a preferred diet. J Insect Physiol. 2009, 55: 197-204. 10.1016/j.jinsphys.2008.11.003.CrossRefPubMed
27.
go back to reference Fried M: Determination of sterile-insect competitiveness. J Econ Entomol. 1971, 64: 869-872.CrossRef Fried M: Determination of sterile-insect competitiveness. J Econ Entomol. 1971, 64: 869-872.CrossRef
28.
go back to reference Helinski MEH, Parker AG, Knols BG: Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 2006, 5: 41-10.1186/1475-2875-5-41.PubMedCentralCrossRefPubMed Helinski MEH, Parker AG, Knols BG: Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 2006, 5: 41-10.1186/1475-2875-5-41.PubMedCentralCrossRefPubMed
29.
go back to reference Helinski MEH, Knols BGJ: Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J Med Entomol. 2008, 45: 698-705. 10.1603/0022-2585(2008)45[698:MCOMAA]2.0.CO;2.CrossRefPubMed Helinski MEH, Knols BGJ: Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J Med Entomol. 2008, 45: 698-705. 10.1603/0022-2585(2008)45[698:MCOMAA]2.0.CO;2.CrossRefPubMed
30.
go back to reference Oliva CF, Maier MJ, Gilles J, Jacquet M, Lemperiere G, Quilici S, Vreysen MJ, Schooneman F, Chadee DD, Boyer S: Effects of irradiation, presence of females, and sugar supply on the longevity of sterile males Aedes albopictus (Skuse) under semi-field conditions on Reunion Island. Acta Trop. 2012, 125: 287-293.CrossRefPubMed Oliva CF, Maier MJ, Gilles J, Jacquet M, Lemperiere G, Quilici S, Vreysen MJ, Schooneman F, Chadee DD, Boyer S: Effects of irradiation, presence of females, and sugar supply on the longevity of sterile males Aedes albopictus (Skuse) under semi-field conditions on Reunion Island. Acta Trop. 2012, 125: 287-293.CrossRefPubMed
31.
go back to reference Damiens D, Vreysen MJB, Gilles JRL: Anopheles arabiensis sperm production after genetic manipulation, dieldrin treatment, and irradiation. J Med Entomol. 2013, 50: 314-316. 10.1603/ME12058.CrossRefPubMed Damiens D, Vreysen MJB, Gilles JRL: Anopheles arabiensis sperm production after genetic manipulation, dieldrin treatment, and irradiation. J Med Entomol. 2013, 50: 314-316. 10.1603/ME12058.CrossRefPubMed
32.
go back to reference Ignatowicz S, Wesolowska B, Zaedee IH: Detection of Irradiated Insect Pests in Stored Products: Locomotor Activity of Irradiated Adult Beetles. Proceedings of the 6th International Working Conference on Stored-Product Protection, 17–23 April 1994. 1994, Canberra, Australia: CAB International, Wallingford, UK, 1209-1213. Ignatowicz S, Wesolowska B, Zaedee IH: Detection of Irradiated Insect Pests in Stored Products: Locomotor Activity of Irradiated Adult Beetles. Proceedings of the 6th International Working Conference on Stored-Product Protection, 17–23 April 1994. 1994, Canberra, Australia: CAB International, Wallingford, UK, 1209-1213.
33.
go back to reference Weldon CW, Prenter J, Taylor PW: Activity patterns of Queensland fruit flies (Bactrocera tryoni) are affected by both mass‒rearing and sterilization. Physiol Entomol. 2010, 35: 148-153. 10.1111/j.1365-3032.2010.00726.x.CrossRef Weldon CW, Prenter J, Taylor PW: Activity patterns of Queensland fruit flies (Bactrocera tryoni) are affected by both mass‒rearing and sterilization. Physiol Entomol. 2010, 35: 148-153. 10.1111/j.1365-3032.2010.00726.x.CrossRef
34.
go back to reference Bhakthan NMG, Nair KK: Fine structural damage in the somatic tissues of gamma-irradiated house fly. 1. Flight muscles. Ann Entomol Soc Am. 1972, 65: 504-508.CrossRef Bhakthan NMG, Nair KK: Fine structural damage in the somatic tissues of gamma-irradiated house fly. 1. Flight muscles. Ann Entomol Soc Am. 1972, 65: 504-508.CrossRef
35.
go back to reference Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T: Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011, 11: 184-10.1186/1471-2148-11-184.PubMedCentralCrossRefPubMed Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T: Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011, 11: 184-10.1186/1471-2148-11-184.PubMedCentralCrossRefPubMed
36.
go back to reference Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ: Historical applications of induced sterilisation in field populations of mosquitoes. Malar J. 2009, 8: S2-PubMedCentralCrossRefPubMed Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ: Historical applications of induced sterilisation in field populations of mosquitoes. Malar J. 2009, 8: S2-PubMedCentralCrossRefPubMed
37.
go back to reference Patterson RS, Lofgren CS, Boston MD: The sterile male technique for control of mosquitoes: a field cage study with Anopheles quadrimaculatus. Florida Entomol. 1968, 51: 77-82. 10.2307/3493605.CrossRef Patterson RS, Lofgren CS, Boston MD: The sterile male technique for control of mosquitoes: a field cage study with Anopheles quadrimaculatus. Florida Entomol. 1968, 51: 77-82. 10.2307/3493605.CrossRef
38.
go back to reference Kaiser PE, Bailey DL, Lowe RE: Realease strategy evaluation of sterile males of Anopheles albimanus with competitive mating. Mosq News. 1981, 41: 60-66. Kaiser PE, Bailey DL, Lowe RE: Realease strategy evaluation of sterile males of Anopheles albimanus with competitive mating. Mosq News. 1981, 41: 60-66.
39.
go back to reference Parker A, Mehta K: Sterile insect technique: a model for dose optimization for improved sterile insect quality. Florida Entomol. 2007, 90: 88-95. 10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2.CrossRef Parker A, Mehta K: Sterile insect technique: a model for dose optimization for improved sterile insect quality. Florida Entomol. 2007, 90: 88-95. 10.1653/0015-4040(2007)90[88:SITAMF]2.0.CO;2.CrossRef
Metadata
Title
Mating competitiveness of sterile male Anopheles coluzzii in large cages
Authors
Hamidou Maïga
David Damiens
Abdoulaye Niang
Simon P Sawadogo
Omnia Fatherhaman
Rosemary S Lees
Olivier Roux
Roch K Dabiré
Georges A Ouédraogo
Fréderic Tripet
Abdoulaye Diabaté
Jeremie RL Gilles
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2014
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-13-460

Other articles of this Issue 1/2014

Malaria Journal 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine