Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2015

Open Access 01-12-2015 | Research article

Maternal creatine homeostasis is altered during gestation in the spiny mouse: is this a metabolic adaptation to pregnancy?

Authors: Stacey J Ellery, Domenic A LaRosa, Michelle M Kett, Paul A Della Gatta, Rod J Snow, David W Walker, Hayley Dickinson

Published in: BMC Pregnancy and Childbirth | Issue 1/2015

Login to get access

Abstract

Background

Pregnancy induces adaptations in maternal metabolism to meet the increased need for nutrients by the placenta and fetus. Creatine is an important intracellular metabolite obtained from the diet and also synthesised endogenously. Experimental evidence suggests that the fetus relies on a maternal supply of creatine for much of gestation. However, the impact of pregnancy on maternal creatine homeostasis is unclear. We hypothesise that alteration of maternal creatine homeostasis occurs during pregnancy to ensure adequate levels of this essential substrate are available for maternal tissues, the placenta and fetus. This study aimed to describe maternal creatine homeostasis from mid to late gestation in the precocial spiny mouse.

Methods

Plasma creatine concentration and urinary excretion were measured from mid to late gestation in pregnant (n = 8) and age-matched virgin female spiny mice (n = 6). At term, body composition and organ weights were assessed and tissue total creatine content determined. mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (CrT1) were assessed by RT-qPCR. Protein expression of AGAT and GAMT was also assessed by western blot analysis.

Results

Plasma creatine and renal creatine excretion decreased significantly from mid to late gestation (P < 0.001, P < 0.05, respectively). Pregnancy resulted in increased lean tissue (P < 0.01), kidney (P < 0.01), liver (P < 0.01) and heart (P < 0.05) mass at term. CrT1 expression was increased in the heart (P < 0.05) and skeletal muscle (P < 0.05) at term compared to non-pregnant tissues, and creatine content of the heart (P < 0.05) and kidney (P < 0.001) were also increased at this time. CrT1 mRNA expression was down-regulated in the liver (<0.01) and brain (<0.01) of pregnant spiny mice at term. Renal AGAT mRNA (P < 0.01) and protein (P < 0.05) expression were both significantly up-regulated at term, with decreased expression of AGAT mRNA (<0.01) and GAMT protein (<0.05) observed in the term pregnant heart. Brain AGAT (<0.01) and GAMT (<0.001) mRNA expression were also decreased at term.

Conclusion

Change of maternal creatine status (increased creatine synthesis and reduced creatine excretion) may be a necessary adjustment of maternal physiology to pregnancy to meet the metabolic demands of maternal tissues, the placenta and developing fetus.
Literature
1.
go back to reference Butte NF, Wong WW, Treuth MS, Ellis KJ, Smith EOÄ. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am J Clin Nutr. 2004;79(6):1078–87.PubMed Butte NF, Wong WW, Treuth MS, Ellis KJ, Smith EOÄ. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am J Clin Nutr. 2004;79(6):1078–87.PubMed
2.
go back to reference Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr. 2000;54:S47–51.PubMedCrossRef Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Eur J Clin Nutr. 2000;54:S47–51.PubMedCrossRef
3.
go back to reference Lasuncion M, Lorenzo J, Palacin M, Herrera E. Maternal factors modulating nutrient transfer to fetus. Neonatology. 1987;51(2):86–93.CrossRef Lasuncion M, Lorenzo J, Palacin M, Herrera E. Maternal factors modulating nutrient transfer to fetus. Neonatology. 1987;51(2):86–93.CrossRef
4.
go back to reference Bell AW, Bauman DE. Adaptations of glucose metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 1997;2(3):265–78.PubMedCrossRef Bell AW, Bauman DE. Adaptations of glucose metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 1997;2(3):265–78.PubMedCrossRef
5.
go back to reference Herrera E, Knopp RH, Freinkel N. Carbohydrate metabolism in pregnancy: VI. Plasma fuels, insulin, liver composition, gluconeogenesis, and nitrogen metabolism during late gestation in the fed and fasted rat. J Clin Investig. 1969;48(12):2260.PubMedPubMedCentralCrossRef Herrera E, Knopp RH, Freinkel N. Carbohydrate metabolism in pregnancy: VI. Plasma fuels, insulin, liver composition, gluconeogenesis, and nitrogen metabolism during late gestation in the fed and fasted rat. J Clin Investig. 1969;48(12):2260.PubMedPubMedCentralCrossRef
6.
go back to reference Zorzano A, Herrera E. Comparative utilization of glycerol and alanine as liver gluconeogenic substrates in the fed late pregnant rat. Int J Biochem. 1986;18(7):583–7.PubMedCrossRef Zorzano A, Herrera E. Comparative utilization of glycerol and alanine as liver gluconeogenic substrates in the fed late pregnant rat. Int J Biochem. 1986;18(7):583–7.PubMedCrossRef
8.
go back to reference Butte NF, King JC. Energy requirements during pregnancy and lactation. Public Health Nutrition-Cab International. 2005;8(7A):1010. Butte NF, King JC. Energy requirements during pregnancy and lactation. Public Health Nutrition-Cab International. 2005;8(7A):1010.
9.
go back to reference Ireland Z, Dickinson H, Snow R, Walker D. Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? Am J Obstet Gynecol. 2008;198(4):431–6.PubMedCrossRef Ireland Z, Dickinson H, Snow R, Walker D. Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? Am J Obstet Gynecol. 2008;198(4):431–6.PubMedCrossRef
10.
go back to reference Miller R, Davis B, Brent R, Koszalka T. Transport of Creatine in the Human Placenta. In: Pharmacologist 1974, vol. 1974. Rockville Pike,Bethesda, MD: Amer Soc Pharn Exp Ther 9650; 2014. p. 305–305. Miller R, Davis B, Brent R, Koszalka T. Transport of Creatine in the Human Placenta. In: Pharmacologist 1974, vol. 1974. Rockville Pike,Bethesda, MD: Amer Soc Pharn Exp Ther 9650; 2014. p. 305–305.
11.
go back to reference Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.PubMed Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.PubMed
12.
go back to reference Brosnan JT, Brosnan ME. Creatine metabolism and the urea cycle. Mol Genet Metab. 2010;100:S49–52.PubMedCrossRef Brosnan JT, Brosnan ME. Creatine metabolism and the urea cycle. Mol Genet Metab. 2010;100:S49–52.PubMedCrossRef
13.
go back to reference Guimbal C, Kilimann M. A Na (+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993;268(12):8418–21.PubMed Guimbal C, Kilimann M. A Na (+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993;268(12):8418–21.PubMed
14.
go back to reference Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(Pt 1(1)):21–40.PubMedPubMedCentralCrossRef Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(Pt 1(1)):21–40.PubMedPubMedCentralCrossRef
15.
go back to reference Braissant O, Henry H, Villard A-M, Speer O, Wallimann T, Bachmann C. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol. 2005;5(1):9.PubMedPubMedCentralCrossRef Braissant O, Henry H, Villard A-M, Speer O, Wallimann T, Bachmann C. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol. 2005;5(1):9.PubMedPubMedCentralCrossRef
16.
go back to reference Dickinson H, Walker D, Cullen-McEwen L, Wintour E, Moritz K. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am J Physiol Renal Physiol. 2005;289(2):F273–9.PubMedCrossRef Dickinson H, Walker D, Cullen-McEwen L, Wintour E, Moritz K. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am J Physiol Renal Physiol. 2005;289(2):F273–9.PubMedCrossRef
17.
go back to reference Brunjes P. A comparative study of prenatal development in the olfactory bulb, neocortex and hippocampal region of the precocial mouse (Acomys cahirinus) and rat. Dev Brain Res. 1989;49(1):7–25.CrossRef Brunjes P. A comparative study of prenatal development in the olfactory bulb, neocortex and hippocampal region of the precocial mouse (Acomys cahirinus) and rat. Dev Brain Res. 1989;49(1):7–25.CrossRef
18.
go back to reference Lamers W, Mooren P, De Graaf A, Charles R. Perinatal development of the liver in rat and spiny mouse. Its relation to altricial and precocial timing of birth. Eur J Biochem. 1985;146(2):475–80.PubMedCrossRef Lamers W, Mooren P, De Graaf A, Charles R. Perinatal development of the liver in rat and spiny mouse. Its relation to altricial and precocial timing of birth. Eur J Biochem. 1985;146(2):475–80.PubMedCrossRef
19.
go back to reference Quinn TA, Ratnayake U, Dickinson H, Nguyen T-H, McIntosh M, Castillo-Melendez M, et al. Ontogeny of the adrenal gland in the spiny mouse, with particular reference to production of the steroids cortisol and dehydroepiandrosterone. Endocrinology. 2013;154(3):1190–201.PubMedCrossRef Quinn TA, Ratnayake U, Dickinson H, Nguyen T-H, McIntosh M, Castillo-Melendez M, et al. Ontogeny of the adrenal gland in the spiny mouse, with particular reference to production of the steroids cortisol and dehydroepiandrosterone. Endocrinology. 2013;154(3):1190–201.PubMedCrossRef
20.
go back to reference Ireland Z, Russell A, Wallimann T, Walker D, Snow R. Developmental changes in the expression of creatine synthesizing enzymes and creatine transporter in a precocial rodent, the spiny mouse. BMC Dev Biol. 2009;9(1):39–50.PubMedPubMedCentralCrossRef Ireland Z, Russell A, Wallimann T, Walker D, Snow R. Developmental changes in the expression of creatine synthesizing enzymes and creatine transporter in a precocial rodent, the spiny mouse. BMC Dev Biol. 2009;9(1):39–50.PubMedPubMedCentralCrossRef
21.
go back to reference Dickinson H, Walker D. Managing a colony of spiny mice (Acomys cahirinus) for perinatal research. Australian and New Zealand Council for the Care of Animals in Research and Training (ANZCCART) News. 2007;20(1):4–11. Dickinson H, Walker D. Managing a colony of spiny mice (Acomys cahirinus) for perinatal research. Australian and New Zealand Council for the Care of Animals in Research and Training (ANZCCART) News. 2007;20(1):4–11.
22.
23.
go back to reference Watt K, Garnham AP, Snow RJ. Skeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementation. Int J Sport Nutr Exerc Metab. 2004;14(5):517.PubMedCrossRef Watt K, Garnham AP, Snow RJ. Skeletal muscle total creatine content and creatine transporter gene expression in vegetarians prior to and following creatine supplementation. Int J Sport Nutr Exerc Metab. 2004;14(5):517.PubMedCrossRef
24.
go back to reference Lowry O, Passonneau J. Typical fluorimetric procedures for metabolic assays. In: Lowry O, Passonneau J, editors. A Flexible System for Enzymatic Analysis. New York: Academic; 1972. p. 194–9. Lowry O, Passonneau J. Typical fluorimetric procedures for metabolic assays. In: Lowry O, Passonneau J, editors. A Flexible System for Enzymatic Analysis. New York: Academic; 1972. p. 194–9.
25.
go back to reference O’Connell BA, Moritz KM, Roberts CT, Walker DW, Dickinson H. The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol Reprod. 2011;85(5):1040–7.PubMedCrossRef O’Connell BA, Moritz KM, Roberts CT, Walker DW, Dickinson H. The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol Reprod. 2011;85(5):1040–7.PubMedCrossRef
26.
go back to reference Speer O, Neukomm LJ, Murphy RM, Zanolla E, Schlattner U, Henry H, et al. Creatine transporters: a reappraisal. Mol Cell Biochem. 2004;256(1):407–24.PubMedCrossRef Speer O, Neukomm LJ, Murphy RM, Zanolla E, Schlattner U, Henry H, et al. Creatine transporters: a reappraisal. Mol Cell Biochem. 2004;256(1):407–24.PubMedCrossRef
27.
go back to reference Snow RJ, Murphy RM. Creatine and the creatine transporter: A review. Mol Cell Biochem. 2001;224(1):169–81.PubMedCrossRef Snow RJ, Murphy RM. Creatine and the creatine transporter: A review. Mol Cell Biochem. 2001;224(1):169–81.PubMedCrossRef
28.
go back to reference Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242.PubMed Walker JB. Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242.PubMed
29.
go back to reference Forsum E, Forsberg A, Nilsson E, Bergström J, Hultman E. Electrolytes, water, RNA, total creatine and calculated resting membrane potential in muscle tissue from pregnant women. Ann Nutr Metab. 2000;44(4):144–9.PubMedCrossRef Forsum E, Forsberg A, Nilsson E, Bergström J, Hultman E. Electrolytes, water, RNA, total creatine and calculated resting membrane potential in muscle tissue from pregnant women. Ann Nutr Metab. 2000;44(4):144–9.PubMedCrossRef
30.
go back to reference Abplanalp J, Laczko E, Philp NJ, Neidhardt J, Zuercher J, Braun P, et al. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet. 2013;22(16):3218–26.PubMedPubMedCentralCrossRef Abplanalp J, Laczko E, Philp NJ, Neidhardt J, Zuercher J, Braun P, et al. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet. 2013;22(16):3218–26.PubMedPubMedCentralCrossRef
32.
go back to reference Thornburg KL, Jacobson S-L, Giraud GD, Morton MJ. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):11–4.PubMedCrossRef Thornburg KL, Jacobson S-L, Giraud GD, Morton MJ. Hemodynamic changes in pregnancy. Semin Perinatol. 2000;24(1):11–4.PubMedCrossRef
33.
go back to reference Wang Z, Visser M, Ma R, Baumgartner R, Kotler D, Gallagher D, et al. Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol. 1996;80(3):824–31.PubMed Wang Z, Visser M, Ma R, Baumgartner R, Kotler D, Gallagher D, et al. Skeletal muscle mass: evaluation of neutron activation and dual-energy X-ray absorptiometry methods. J Appl Physiol. 1996;80(3):824–31.PubMed
34.
go back to reference Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, et al. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52(2):214–8.PubMed Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, et al. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52(2):214–8.PubMed
35.
go back to reference Furlanetto R, Underwood L, WYK JV, Handwerger S. Serum immunoreactive somatomedin-c is elevated late in pregnancy1. J Clin Endocrinol Metab. 1978;47(3):695–8.PubMedCrossRef Furlanetto R, Underwood L, WYK JV, Handwerger S. Serum immunoreactive somatomedin-c is elevated late in pregnancy1. J Clin Endocrinol Metab. 1978;47(3):695–8.PubMedCrossRef
36.
go back to reference Osathanondh R, Tulchinsky D, Chopra IJ. Total and free thyroxine and triiodothyronine in normal and complicated pregnancy. J Clin Endocrinol Metab. 1976;42(1):98–104.PubMedCrossRef Osathanondh R, Tulchinsky D, Chopra IJ. Total and free thyroxine and triiodothyronine in normal and complicated pregnancy. J Clin Endocrinol Metab. 1976;42(1):98–104.PubMedCrossRef
37.
go back to reference Odoom JE, Kemp GJ, Radda GK. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem. 1996;158(2):179–88.PubMedCrossRef Odoom JE, Kemp GJ, Radda GK. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem. 1996;158(2):179–88.PubMedCrossRef
38.
go back to reference Poidatz D, Dos Santos E, Brulé A, De Mazancourt P, Dieudonné M. Estrogen-related receptor gamma modulates energy metabolism target genes in human trophoblast. Placenta. 2012;33(9):688–95. Poidatz D, Dos Santos E, Brulé A, De Mazancourt P, Dieudonné M. Estrogen-related receptor gamma modulates energy metabolism target genes in human trophoblast. Placenta. 2012;33(9):688–95.
39.
go back to reference Fujimoto J, Nakagawa Y, Toyoki H, Sakaguchi H, Sato E, Tamaya T. Estrogen-related receptor expression in placenta throughout gestation. J Steroid Biochem Mol Biol. 2005;94(1):67–9.PubMedCrossRef Fujimoto J, Nakagawa Y, Toyoki H, Sakaguchi H, Sato E, Tamaya T. Estrogen-related receptor expression in placenta throughout gestation. J Steroid Biochem Mol Biol. 2005;94(1):67–9.PubMedCrossRef
40.
go back to reference Brown EL, Snow RJ, Wright CR, Cho Y, Wallace MA, Kralli A, et al. PGC-1α and PGC-1β increase CrT expression and creatine uptake in myotubes via ERRα. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014;1843(12):2937–43. Brown EL, Snow RJ, Wright CR, Cho Y, Wallace MA, Kralli A, et al. PGC-1α and PGC-1β increase CrT expression and creatine uptake in myotubes via ERRα. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014;1843(12):2937–43.
41.
go back to reference Atherton J, Dark J, Garland H, Morgan M, Pidgeon J, Soni S. Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat. J Physiol. 1982;330(1):81–93.PubMedPubMedCentralCrossRef Atherton J, Dark J, Garland H, Morgan M, Pidgeon J, Soni S. Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat. J Physiol. 1982;330(1):81–93.PubMedPubMedCentralCrossRef
42.
go back to reference Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26(4):393–9.PubMedCrossRef Pritchard JA. Changes in the blood volume during pregnancy and delivery. Anesthesiology. 1965;26(4):393–9.PubMedCrossRef
43.
go back to reference Everson G. Gastrointestinal motility in pregnancy. Gastroenterol Clin North Am. 1992;21(4):751–76.PubMed Everson G. Gastrointestinal motility in pregnancy. Gastroenterol Clin North Am. 1992;21(4):751–76.PubMed
44.
go back to reference Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Dig Dis Sci. 1982;27(11):1015–8.PubMedCrossRef Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Effect of pregnancy on gastrointestinal transit. Dig Dis Sci. 1982;27(11):1015–8.PubMedCrossRef
45.
go back to reference Baron TH, Ramirez B, Richter JE. Gastrointestinal motility disorders during pregnancy. Ann Intern Med. 1993;118(5):366–75.PubMedCrossRef Baron TH, Ramirez B, Richter JE. Gastrointestinal motility disorders during pregnancy. Ann Intern Med. 1993;118(5):366–75.PubMedCrossRef
46.
go back to reference Peral M, Galvez M, Soria M, Ilundain A. Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev. 2005;126(4):523–30.PubMedCrossRef Peral M, Galvez M, Soria M, Ilundain A. Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev. 2005;126(4):523–30.PubMedCrossRef
47.
go back to reference Tosco M, Faelli A, Sironi C, Gastaldi G, Orsenigo M. A creatine transporter is operative at the brush border level of the rat jejunal enterocyte. J Membr Biol. 2004;202(2):85–95.PubMedCrossRef Tosco M, Faelli A, Sironi C, Gastaldi G, Orsenigo M. A creatine transporter is operative at the brush border level of the rat jejunal enterocyte. J Membr Biol. 2004;202(2):85–95.PubMedCrossRef
48.
go back to reference Salomons GS, Wyss M. (Eds.) Creatine and creatine kinase in health and disease. Springer Science and Business Media: Vol 46. Salomons GS, Wyss M. (Eds.) Creatine and creatine kinase in health and disease. Springer Science and Business Media: Vol 46.
49.
go back to reference da Silva RP, Clow K, Brosnan JT, Brosnan ME. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. The British journal of nutrition. 2014;111(4):571–7. da Silva RP, Clow K, Brosnan JT, Brosnan ME. Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. The British journal of nutrition. 2014;111(4):571–7.
50.
go back to reference Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev. 2013, Issue 3:1 –71. Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. Cochrane Database Syst Rev. 2013, Issue 3:1 –71.
51.
go back to reference Neves AL, Guimarães AI, Rolão C. Preventive oral iron supplementation for non-anemic women during pregnancy. Acta Obstet Ginecol Port. 2012;6(1):16–9. Neves AL, Guimarães AI, Rolão C. Preventive oral iron supplementation for non-anemic women during pregnancy. Acta Obstet Ginecol Port. 2012;6(1):16–9.
52.
go back to reference Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DW. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14(1):150.PubMedPubMedCentralCrossRef Dickinson H, Ellery S, Ireland Z, LaRosa D, Snow R, Walker DW. Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14(1):150.PubMedPubMedCentralCrossRef
53.
go back to reference Cannata DJ, Ireland Z, Dickinson H, Snow RJ, Russell AP, West JM, et al. Maternal creatine supplementation from mid-pregnancy protects the diaphragm of the newborn spiny mouse from intrapartum hypoxia-induced damage. Pediatr Res. 2010;68(5):393–8.PubMed Cannata DJ, Ireland Z, Dickinson H, Snow RJ, Russell AP, West JM, et al. Maternal creatine supplementation from mid-pregnancy protects the diaphragm of the newborn spiny mouse from intrapartum hypoxia-induced damage. Pediatr Res. 2010;68(5):393–8.PubMed
54.
go back to reference Ireland Z, Castillo-Melendez M, Dickinson H, Snow R, Walker D. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience. 2011;194:372–9.PubMedCrossRef Ireland Z, Castillo-Melendez M, Dickinson H, Snow R, Walker D. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience. 2011;194:372–9.PubMedCrossRef
55.
go back to reference Ellery SJ, Ireland Z, Kett MM, Snow R, Walker DW, Dickinson H. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney. Pediatr Res. 2012;73(2):201–208.PubMedCrossRef Ellery SJ, Ireland Z, Kett MM, Snow R, Walker DW, Dickinson H. Creatine pretreatment prevents birth asphyxia-induced injury of the newborn spiny mouse kidney. Pediatr Res. 2012;73(2):201–208.PubMedCrossRef
Metadata
Title
Maternal creatine homeostasis is altered during gestation in the spiny mouse: is this a metabolic adaptation to pregnancy?
Authors
Stacey J Ellery
Domenic A LaRosa
Michelle M Kett
Paul A Della Gatta
Rod J Snow
David W Walker
Hayley Dickinson
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2015
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-015-0524-1

Other articles of this Issue 1/2015

BMC Pregnancy and Childbirth 1/2015 Go to the issue