Skip to main content
Top
Published in: BMC Cancer 1/2021

Open Access 01-12-2021 | Mastectomy | Research article

Comparison of survival in non-metastatic inflammatory and other T4 breast cancers: a SEER population-based analysis

Authors: Dechuang Jiao, Jingyang Zhang, Jiujun Zhu, Xuhui Guo, Yue Yang, Hui Xiao, Zhenzhen Liu

Published in: BMC Cancer | Issue 1/2021

Login to get access

Abstract

Background

Previous studies have reported poor survival rates in inflammatory breast cancer (IBC) patients than non-inflammatory local advanced breast cancer (non-IBC) patients. However, until now, the survival rate of IBC and other T4 non-IBC (T4-non-IBC) patients remains unexplored.

Methods

Surveillance, Epidemiology, and End Results (SEER) database was searched to identify cases with confirmed non-metastatic IBC and T4-non-IBC who had received surgery, chemotherapy, and radiotherapy between 2010 and 2015. IBC was defined as per the American Joint Committee on Cancer (AJCC) 7th edition. Breast Cancer-Specific Survival (BCSS) was estimated by plotting the Kaplan-Meier curve and compared across groups by using the log-rank test. Cox model was constructed to determine the association between IBC and BCSS after adjusting for age, race, stage of disease, tumor grade and surgery type.

Results

Out of a total of 1986 patients, 37.1% had IBC and mean age was 56.6 ± 12.4. After a median follow-up time of 28 months, 3-year BCSS rate for IBC and T4-non-IBC patients was 81.4 and 81.9%, respectively (log-rank p = 0.398). The 3-year BCSS rate in HR−/HER2+ cohort was higher for IBC patients than T4-non-IBC patients (89.5% vs. 80.8%; log-rank p = 0.028), and in HR−/HER2- cohort it was significantly lower for IBC patients than T4-non-IBC patients (57.4% vs. 67.5%; log-rank p = 0.010). However, it was identical between IBC and T4-non-IBC patients in both HR+/HER2- (85.0% vs. 85.3%; log-rank p = 0.567) and HR+/HER2+ (93.6% vs. 91.0%, log-rank p = 0.510) cohorts. After adjusting for potential confounding variables, we observed that IBC is a significant independent predictor for survival of HR−/HER2+ cohort (hazards ratio [HR] = 0.442; 95% CI: 0.216–0.902; P = 0.025) and HR−/HER2- cohort (HR = 1.738; 95% CI: 1.192–2.534; P = 0.004).

Conclusions

Patients with IBC and T4-non-IBC had a similar BCSS in the era of modern systemic treatment. In IBC patients, the HR−/HER2+ subtype is associated with a better outcome, and HR−/HER2- subtype is associated with poorer outcomes as compared to the T4-non-IBC patients.
Literature
1.
go back to reference Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97(13):966–75.CrossRef Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97(13):966–75.CrossRef
2.
go back to reference Dawood S, Merajver SD, Viens P, Vermeulen PB, Swain SM, Buchholz TA, Dirix LY, Levine PH, Lucci A, Krishnamurthy S, et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011;22(3):515–23.CrossRef Dawood S, Merajver SD, Viens P, Vermeulen PB, Swain SM, Buchholz TA, Dirix LY, Levine PH, Lucci A, Krishnamurthy S, et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011;22(3):515–23.CrossRef
3.
go back to reference von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S, Gerber B, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.CrossRef von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S, Gerber B, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.CrossRef
4.
go back to reference Bozzetti F, Saccozzi R, De Lena M, Salvadori B. Inflammatory cancer of the breast: analysis of 114 cases. J Surg Oncol. 1981;18(4):355–61.CrossRef Bozzetti F, Saccozzi R, De Lena M, Salvadori B. Inflammatory cancer of the breast: analysis of 114 cases. J Surg Oncol. 1981;18(4):355–61.CrossRef
5.
go back to reference Romanoff A, Zabor EC, Petruolo O, Stempel M, El-Tamer M, Morrow M, Barrio AV. Does nonmetastatic inflammatory breast cancer have a worse prognosis than other nonmetastatic T4 cancers? Cancer. 2018;124(22):4314–21.CrossRef Romanoff A, Zabor EC, Petruolo O, Stempel M, El-Tamer M, Morrow M, Barrio AV. Does nonmetastatic inflammatory breast cancer have a worse prognosis than other nonmetastatic T4 cancers? Cancer. 2018;124(22):4314–21.CrossRef
6.
go back to reference Cheng YC, Shi Y, Zhang MJ, Brazauskas R, Hemmer MT, Bishop MR, Nieto Y, Stadtmauer E, Ayash L, Gale RP, et al. Long-term outcome of inflammatory breast Cancer compared to non-inflammatory breast Cancer in the setting of high-dose chemotherapy with autologous hematopoietic cell transplantation. J Cancer. 2017;8(6):1009–17.CrossRef Cheng YC, Shi Y, Zhang MJ, Brazauskas R, Hemmer MT, Bishop MR, Nieto Y, Stadtmauer E, Ayash L, Gale RP, et al. Long-term outcome of inflammatory breast Cancer compared to non-inflammatory breast Cancer in the setting of high-dose chemotherapy with autologous hematopoietic cell transplantation. J Cancer. 2017;8(6):1009–17.CrossRef
7.
go back to reference Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, Sneige N, Islam R, Ueno NT, Buchholz TA, et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer. 2007;110(7):1436–44.CrossRef Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, Sneige N, Islam R, Ueno NT, Buchholz TA, et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer. 2007;110(7):1436–44.CrossRef
8.
go back to reference Low JA, Berman AW, Steinberg SM, Danforth DN, Lippman ME, Swain SM. Long-term follow-up for locally advanced and inflammatory breast cancer patients treated with multimodality therapy. J Clin Oncol. 2004;22(20):4067–74.CrossRef Low JA, Berman AW, Steinberg SM, Danforth DN, Lippman ME, Swain SM. Long-term follow-up for locally advanced and inflammatory breast cancer patients treated with multimodality therapy. J Clin Oncol. 2004;22(20):4067–74.CrossRef
9.
go back to reference Panades M, Olivotto IA, Speers CH, Shenkier T, Olivotto TA, Weir L, Allan SJ, Truong PT. Evolving treatment strategies for inflammatory breast cancer: a population-based survival analysis. J Clin Oncol. 2005;23(9):1941–50.CrossRef Panades M, Olivotto IA, Speers CH, Shenkier T, Olivotto TA, Weir L, Allan SJ, Truong PT. Evolving treatment strategies for inflammatory breast cancer: a population-based survival analysis. J Clin Oncol. 2005;23(9):1941–50.CrossRef
10.
go back to reference Dawood S, Ueno NT, Valero V, Woodward WA, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM, Cristofanilli M. Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early. Cancer. 2011;117(9):1819–26.CrossRef Dawood S, Ueno NT, Valero V, Woodward WA, Buchholz TA, Hortobagyi GN, Gonzalez-Angulo AM, Cristofanilli M. Differences in survival among women with stage III inflammatory and noninflammatory locally advanced breast cancer appear early. Cancer. 2011;117(9):1819–26.CrossRef
11.
go back to reference Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.CrossRef Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN, et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60(6):351–75.CrossRef
12.
go back to reference Wang Z, Wang H, Ding X, Chen X, Shen K. A large-cohort retrospective study of metastatic patterns and prognostic outcomes between inflammatory and non-inflammatory breast cancer. Ther Adv Med Oncol. 2020;12:1758835920932674.PubMedPubMedCentral Wang Z, Wang H, Ding X, Chen X, Shen K. A large-cohort retrospective study of metastatic patterns and prognostic outcomes between inflammatory and non-inflammatory breast cancer. Ther Adv Med Oncol. 2020;12:1758835920932674.PubMedPubMedCentral
13.
go back to reference BF H, LA R, BK E: The surveillance, epidemiology, and end results program: a national resource. Cancer Epidemiol Biomark Prev1999, 8(12):1117–1121. BF H, LA R, BK E: The surveillance, epidemiology, and end results program: a national resource. Cancer Epidemiol Biomark Prev1999, 8(12):1117–1121.
14.
go back to reference Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, Moliterni A, Vazquez F, Byakhov MJ, Lichinitser M, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–7.CrossRef Gianni L, Eiermann W, Semiglazov V, Lluch A, Tjulandin S, Zambetti M, Moliterni A, Vazquez F, Byakhov MJ, Lichinitser M, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–7.CrossRef
15.
go back to reference Gong Y, Liu YR, Ji P, Hu X, Shao ZM. Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep. 2017;7:45411.CrossRef Gong Y, Liu YR, Ji P, Hu X, Shao ZM. Impact of molecular subtypes on metastatic breast cancer patients: a SEER population-based study. Sci Rep. 2017;7:45411.CrossRef
16.
go back to reference van Uden DJP, van Maaren MC, Bult P, Strobbe LJA, van der Hoeven JJM, Blanken-Peeters C, Siesling S, de Wilt JHW. Pathologic complete response and overall survival in breast cancer subtypes in stage III inflammatory breast cancer. Breast Cancer Res Treat. 2019;176(1):217–26.CrossRef van Uden DJP, van Maaren MC, Bult P, Strobbe LJA, van der Hoeven JJM, Blanken-Peeters C, Siesling S, de Wilt JHW. Pathologic complete response and overall survival in breast cancer subtypes in stage III inflammatory breast cancer. Breast Cancer Res Treat. 2019;176(1):217–26.CrossRef
17.
go back to reference Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, Woodward WA, Reuben JM, Matsuoka J, Gong Y, Krishnamurthy S, et al. Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat. 2011;125(3):785–95.CrossRef Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, Woodward WA, Reuben JM, Matsuoka J, Gong Y, Krishnamurthy S, et al. Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer. Breast Cancer Res Treat. 2011;125(3):785–95.CrossRef
18.
go back to reference Nakhlis F, Regan MM, Warren LE, Bellon JR, Hirshfield-Bartek J, Duggan MM, Dominici LS, Golshan M, Jacene HA, Yeh ED, et al. The impact of residual disease after preoperative systemic therapy on clinical outcomes in patients with inflammatory breast Cancer. Ann Surg Oncol. 2017;24(9):2563–9.CrossRef Nakhlis F, Regan MM, Warren LE, Bellon JR, Hirshfield-Bartek J, Duggan MM, Dominici LS, Golshan M, Jacene HA, Yeh ED, et al. The impact of residual disease after preoperative systemic therapy on clinical outcomes in patients with inflammatory breast Cancer. Ann Surg Oncol. 2017;24(9):2563–9.CrossRef
Metadata
Title
Comparison of survival in non-metastatic inflammatory and other T4 breast cancers: a SEER population-based analysis
Authors
Dechuang Jiao
Jingyang Zhang
Jiujun Zhu
Xuhui Guo
Yue Yang
Hui Xiao
Zhenzhen Liu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2021
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07855-z

Other articles of this Issue 1/2021

BMC Cancer 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine