Skip to main content
Top
Published in: Experimental Brain Research 1/2017

Open Access 01-01-2017 | Research Article

Mapping the visual brain areas susceptible to phosphene induction through brain stimulation

Authors: Lukas F. Schaeffner, Andrew E. Welchman

Published in: Experimental Brain Research | Issue 1/2017

Login to get access

Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique whose effects on neural activity can be uncertain. Within the visual cortex, phosphenes are a useful marker of TMS: They indicate the induction of neural activation that propagates and creates a conscious percept. However, we currently do not know how susceptible different areas of the visual cortex are to TMS-induced phosphenes. In this study, we systematically map out locations in the visual cortex where stimulation triggered phosphenes. We relate this to the retinotopic organization and the location of object- and motion-selective areas, identified by functional magnetic resonance imaging (fMRI) measurements. Our results show that TMS can reliably induce phosphenes in early (V1, V2d, and V2v) and dorsal (V3d and V3a) visual areas close to the interhemispheric cleft. However, phosphenes are less likely in more lateral locations (hMT+/V5 and LOC). This suggests that early and dorsal visual areas are particularly amenable to TMS and that TMS can be used to probe the functional role of these areas.
Literature
go back to reference Antal A, Nitsche MA, Kincses TZ, Lampe C, Paulus W (2004) No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. NeuroReport 15:297–302CrossRefPubMed Antal A, Nitsche MA, Kincses TZ, Lampe C, Paulus W (2004) No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study. NeuroReport 15:297–302CrossRefPubMed
go back to reference Boroojerdi B, Meister IG, Foltys H, Sparing R, Cohen LG, Topper R (2002) Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clin Neurophysiol 113:1501–1504CrossRefPubMed Boroojerdi B, Meister IG, Foltys H, Sparing R, Cohen LG, Topper R (2002) Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clin Neurophysiol 113:1501–1504CrossRefPubMed
go back to reference Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG (1992) Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 85:9–16CrossRefPubMed Brasil-Neto JP, McShane LM, Fuhr P, Hallett M, Cohen LG (1992) Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility. Electroencephalogr Clin Neurophysiol 85:9–16CrossRefPubMed
go back to reference Cai W, George JS, Chambers CD, Stokes MG, Verbruggen F, Aron AR (2012) Stimulating deep cortical structures with the batwing coil: how to determine the intensity for transcranial magnetic stimulation using coil-cortex distance. J Neurosci Methods 204:238–241. doi:10.1016/j.jneumeth.2011.11.020 CrossRefPubMed Cai W, George JS, Chambers CD, Stokes MG, Verbruggen F, Aron AR (2012) Stimulating deep cortical structures with the batwing coil: how to determine the intensity for transcranial magnetic stimulation using coil-cortex distance. J Neurosci Methods 204:238–241. doi:10.​1016/​j.​jneumeth.​2011.​11.​020 CrossRefPubMed
go back to reference Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–3273CrossRefPubMed Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–3273CrossRefPubMed
go back to reference Diekhoff S, Uludag K, Sparing R, Tittgemeyer M, Cavusoglu M, von Cramon DY, Grefkes C (2011) Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapping 32:341–357. doi:10.1002/hbm.21024 CrossRef Diekhoff S, Uludag K, Sparing R, Tittgemeyer M, Cavusoglu M, von Cramon DY, Grefkes C (2011) Functional localization in the human brain: gradient-echo, spin-echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapping 32:341–357. doi:10.​1002/​hbm.​21024 CrossRef
go back to reference Elkin-Frankston S, Fried PJ, Pascual-Leone A, Rushmore RJ 3rd, Valero-Cabr A (2010) A novel approach for documenting phosphenes induced by transcranial magnetic stimulation. J Vis Exp. doi:10.3791/1762 PubMedPubMedCentral Elkin-Frankston S, Fried PJ, Pascual-Leone A, Rushmore RJ 3rd, Valero-Cabr A (2010) A novel approach for documenting phosphenes induced by transcranial magnetic stimulation. J Vis Exp. doi:10.​3791/​1762 PubMedPubMedCentral
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
go back to reference Gerwig M, Kastrup O, Meyer BU, Niehaus L (2003) Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation. J Neurol Sci 215:75–78CrossRefPubMed Gerwig M, Kastrup O, Meyer BU, Niehaus L (2003) Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation. J Neurol Sci 215:75–78CrossRefPubMed
go back to reference Gothe J, Brandt SA, Irlbacher K, Roricht S, Sabel BA, Meyer BU (2002) Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125:479–490CrossRefPubMed Gothe J, Brandt SA, Irlbacher K, Roricht S, Sabel BA, Meyer BU (2002) Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125:479–490CrossRefPubMed
go back to reference Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198CrossRefPubMed Kammer T (1999) Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia 37:191–198CrossRefPubMed
go back to reference Kammer T, Beck S, Erb M, Grodd W (2001a) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021CrossRefPubMed Kammer T, Beck S, Erb M, Grodd W (2001a) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021CrossRefPubMed
go back to reference Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001b) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112:250–258CrossRefPubMed Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001b) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112:250–258CrossRefPubMed
go back to reference Marg E, Rudiak D (1994) Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom Vis Sci 71:301–311CrossRefPubMed Marg E, Rudiak D (1994) Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optom Vis Sci 71:301–311CrossRefPubMed
go back to reference Meister IG, Weidemann J, Dambeck N et al (2003) Neural correlates of phosphene perception. Suppl Clin Neurophysiol 56:305–311CrossRefPubMed Meister IG, Weidemann J, Dambeck N et al (2003) Neural correlates of phosphene perception. Suppl Clin Neurophysiol 56:305–311CrossRefPubMed
go back to reference Mills KR, Boniface SJ, Schubert M (1992) Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol 85:17–21CrossRefPubMed Mills KR, Boniface SJ, Schubert M (1992) Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalogr Clin Neurophysiol 85:17–21CrossRefPubMed
go back to reference Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264. doi:10.1016/j.neuroimage.2013.04.067 CrossRefPubMed Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ (2013) Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 81:253–264. doi:10.​1016/​j.​neuroimage.​2013.​04.​067 CrossRefPubMed
go back to reference Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237CrossRefPubMed Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237CrossRefPubMed
go back to reference Ray PG, Meador KJ, Epstein CM, Loring DW, Day LJ (1998) Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol 15:351–357CrossRefPubMed Ray PG, Meador KJ, Epstein CM, Loring DW, Day LJ (1998) Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes. J Clin Neurophysiol 15:351–357CrossRefPubMed
go back to reference Salminen-Vaparanta N, Noreika V, Revonsuo A, Koivisto M, Vanni S (2012) Is selective primary visual cortex stimulation achievable with TMS? Hum Brain Mapping 33:652–665. doi:10.1002/hbm.21237 CrossRef Salminen-Vaparanta N, Noreika V, Revonsuo A, Koivisto M, Vanni S (2012) Is selective primary visual cortex stimulation achievable with TMS? Hum Brain Mapping 33:652–665. doi:10.​1002/​hbm.​21237 CrossRef
go back to reference Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB (2005) Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94:4520–4527. doi:10.1152/jn.00067.2005 CrossRefPubMed Stokes MG, Chambers CD, Gould IC, Henderson TR, Janko NE, Allen NB, Mattingley JB (2005) Simple metric for scaling motor threshold based on scalp-cortex distance: application to studies using transcranial magnetic stimulation. J Neurophysiol 94:4520–4527. doi:10.​1152/​jn.​00067.​2005 CrossRefPubMed
go back to reference Stokes MG, Barker AT, Dervinis M, Verbruggen F, Maizey L, Adams RC, Chambers CD (2013) Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. J Neurophysiol 109:437–444. doi:10.1152/jn.00510.2012 CrossRefPubMed Stokes MG, Barker AT, Dervinis M, Verbruggen F, Maizey L, Adams RC, Chambers CD (2013) Biophysical determinants of transcranial magnetic stimulation: effects of excitability and depth of targeted area. J Neurophysiol 109:437–444. doi:10.​1152/​jn.​00510.​2012 CrossRefPubMed
go back to reference Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation. A neurochronometric of mind. MIT Press, Cambridge Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation. A neurochronometric of mind. MIT Press, Cambridge
go back to reference Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the safety of repetitive transcranial magnetic stimulation, 5–7 June 1996. Electroencephalogr Clin Neurophysiol 108:1–16CrossRefPubMed Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the safety of repetitive transcranial magnetic stimulation, 5–7 June 1996. Electroencephalogr Clin Neurophysiol 108:1–16CrossRefPubMed
go back to reference Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2013) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66:531–542. doi:10.1016/j.neuroimage.2012.10.046 CrossRefPubMed Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C (2013) Mapping the hand, foot and face representations in the primary motor cortex—retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66:531–542. doi:10.​1016/​j.​neuroimage.​2012.​10.​046 CrossRefPubMed
go back to reference Windhoff M, Opitz A, Thielscher A (2013) Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapping 34:923–935. doi:10.1002/hbm.21479 CrossRef Windhoff M, Opitz A, Thielscher A (2013) Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models. Hum Brain Mapping 34:923–935. doi:10.​1002/​hbm.​21479 CrossRef
go back to reference Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMed Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649PubMed
Metadata
Title
Mapping the visual brain areas susceptible to phosphene induction through brain stimulation
Authors
Lukas F. Schaeffner
Andrew E. Welchman
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Experimental Brain Research / Issue 1/2017
Print ISSN: 0014-4819
Electronic ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-016-4784-4

Other articles of this Issue 1/2017

Experimental Brain Research 1/2017 Go to the issue