Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Mammographic density and risk of breast cancer by tumor characteristics: a case-control study

Authors: Kavitha Krishnan, Laura Baglietto, Jennifer Stone, Catriona McLean, Melissa C. Southey, Dallas R. English, Graham G. Giles, John L. Hopper

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

In a previous paper, we had assumed that the risk of screen-detected breast cancer mostly reflects inherent risk, and the risk of whether a breast cancer is interval versus screen-detected mostly reflects risk of masking. We found that inherent risk was predicted by body mass index (BMI) and dense area (DA) or percent dense area (PDA), but not by non-dense area (NDA). Masking, however, was best predicted by PDA but not BMI. In this study, we aimed to investigate if these associations vary by tumor characteristics and mode of detection.

Methods

We conducted a case-control study nested within the Melbourne Collaborative Cohort Study of 244 screen-detected cases matched to 700 controls and 148 interval cases matched to 446 controls. DA, NDA and PDA were measured using the Cumulus software. Tumor characteristics included size, grade, lymph node involvement, and ER, PR, and HER2 status. Conditional and unconditional logistic regression were applied as appropriate to estimate the Odds per Adjusted Standard Deviation (OPERA) adjusted for age and BMI, allowing the association with BMI to be a function of age at diagnosis.

Results

For screen-detected cancer, both DA and PDA were associated to an increased risk of tumors of large size (OPERA ~ 1.6) and positive lymph node involvement (OPERA ~ 1.8); no association was observed for BMI and NDA. For risk of interval versus screen-detected breast cancer, the association with risk for any of the three mammographic measures did not vary by tumor characteristics; an association was observed for BMI for positive lymph nodes (OPERA ~ 0.6). No associations were observed for tumor grade and ER, PR and HER2 status of tumor.

Conclusions

Both DA and PDA were predictors of inherent risk of larger breast tumors and positive nodal status, whereas for each of the three mammographic density measures the association with risk of masking did not vary by tumor characteristics. This might raise the hypothesis that the risk of breast tumours with poorer prognosis, such as larger and node positive tumours, is intrinsically associated with increased mammographic density and not through delay of diagnosis due to masking.
Literature
1.
go back to reference Wang AT, Vachon CM, Brandt KR, Ghosh K. Breast density and breast cancer risk: a practical review. Mayo Clin Proc. 2014;89:548–57.CrossRefPubMed Wang AT, Vachon CM, Brandt KR, Ghosh K. Breast density and breast cancer risk: a practical review. Mayo Clin Proc. 2014;89:548–57.CrossRefPubMed
2.
go back to reference McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2006;15:1159–69.CrossRef McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2006;15:1159–69.CrossRef
3.
go back to reference Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014;106 Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014;106
4.
go back to reference Huo CW, Chew GL, Britt KL, Ingman WV, Henderson MA, Hopper JL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144:479–502.CrossRefPubMed Huo CW, Chew GL, Britt KL, Ingman WV, Henderson MA, Hopper JL, et al. Mammographic density-a review on the current understanding of its association with breast cancer. Breast Cancer Res Treat. 2014;144:479–502.CrossRefPubMed
5.
go back to reference Price ER, Hargreaves J, Lipson JA, Sickles EA, Brenner RJ, Lindfors KK, et al. The California breast density information group: a collaborative response to the issues of breast density, breast cancer risk, and breast density notification legislation. Radiology. 2013;269:887–92.CrossRefPubMed Price ER, Hargreaves J, Lipson JA, Sickles EA, Brenner RJ, Lindfors KK, et al. The California breast density information group: a collaborative response to the issues of breast density, breast cancer risk, and breast density notification legislation. Radiology. 2013;269:887–92.CrossRefPubMed
6.
go back to reference Krishnan K, Baglietto L, Apicella C, Stone J, Southey MC, English DR, et al. Mammographic density and risk of breast cancer by mode of detection and tumor size: a case-control study. Breast cancer research: BCR. 2016;18:63.CrossRefPubMedPubMedCentral Krishnan K, Baglietto L, Apicella C, Stone J, Southey MC, English DR, et al. Mammographic density and risk of breast cancer by mode of detection and tumor size: a case-control study. Breast cancer research: BCR. 2016;18:63.CrossRefPubMedPubMedCentral
7.
go back to reference Sartor H, Borgquist S, Hartman L, Zackrisson S. Do pathological parameters differ with regard to breast density and mode of detection in breast cancer? The Malmo diet and cancer study. Breast (Edinburgh, Scotland). 2015;24:12–7.CrossRef Sartor H, Borgquist S, Hartman L, Zackrisson S. Do pathological parameters differ with regard to breast density and mode of detection in breast cancer? The Malmo diet and cancer study. Breast (Edinburgh, Scotland). 2015;24:12–7.CrossRef
8.
go back to reference Sartor H, Zackrisson S, Elebro K, Hartman L, Borgquist S. Mammographic density in relation to tumor biomarkers, molecular subtypes, and mode of detection in breast cancer. Cancer causes & control: CCC. 2015;26:931–9.CrossRefPubMed Sartor H, Zackrisson S, Elebro K, Hartman L, Borgquist S. Mammographic density in relation to tumor biomarkers, molecular subtypes, and mode of detection in breast cancer. Cancer causes & control: CCC. 2015;26:931–9.CrossRefPubMed
9.
go back to reference Ding J, Warren R, Girling A, Thompson D, Easton D. Mammographic density, estrogen receptor status and other breast cancer tumor characteristics. Breast J. 2010;16:279–89.CrossRefPubMed Ding J, Warren R, Girling A, Thompson D, Easton D. Mammographic density, estrogen receptor status and other breast cancer tumor characteristics. Breast J. 2010;16:279–89.CrossRefPubMed
10.
go back to reference Aiello EJ, Buist DS, White E, Porter PL. Association between mammographic breast density and breast cancer tumor characteristics. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005;14:662–8.CrossRef Aiello EJ, Buist DS, White E, Porter PL. Association between mammographic breast density and breast cancer tumor characteristics. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005;14:662–8.CrossRef
11.
go back to reference Baglietto L, Krishnan K, Stone J, Apicella C, Southey MC, English DR, et al. Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer. Am J Epidemiol. 2014;179:475–83.CrossRefPubMed Baglietto L, Krishnan K, Stone J, Apicella C, Southey MC, English DR, et al. Associations of mammographic dense and nondense areas and body mass index with risk of breast cancer. Am J Epidemiol. 2014;179:475–83.CrossRefPubMed
12.
go back to reference Giles GG, English DR. The Melbourne collaborative cohort study. IARC Sci Publ. 2002;156:69–70.PubMed Giles GG, English DR. The Melbourne collaborative cohort study. IARC Sci Publ. 2002;156:69–70.PubMed
13.
go back to reference Baglietto L, Severi G, English DR, Krishnan K, Hopper JL, McLean C, et al. Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19:492–502.CrossRef Baglietto L, Severi G, English DR, Krishnan K, Hopper JL, McLean C, et al. Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19:492–502.CrossRef
14.
go back to reference Hopper JL. Odds per adjusted standard deviation: comparing strengths of associations for risk factors measured on different scales and across diseases and populations. Am J Epidemiol. 2015;182:863–7.CrossRefPubMedPubMedCentral Hopper JL. Odds per adjusted standard deviation: comparing strengths of associations for risk factors measured on different scales and across diseases and populations. Am J Epidemiol. 2015;182:863–7.CrossRefPubMedPubMedCentral
15.
go back to reference Nguyen TL, Aung YK, Evans CF, Yoon-Ho C, Jenkins MA, Sung J, et al. Mammographic density defined by higher than conventional brightness threshold better predicts breast cancer risk for full-field digital mammograms. Breast Cancer Res. 2015;17:142.CrossRefPubMedPubMedCentral Nguyen TL, Aung YK, Evans CF, Yoon-Ho C, Jenkins MA, Sung J, et al. Mammographic density defined by higher than conventional brightness threshold better predicts breast cancer risk for full-field digital mammograms. Breast Cancer Res. 2015;17:142.CrossRefPubMedPubMedCentral
16.
go back to reference Kim BK, Choi YH, Nguyen TL, Nam SJ, Lee JE, Hopper JL, et al. Mammographic density and risk of breast cancer in Korean women. Eur J Cancer Prev. 2015;24:422–9.CrossRefPubMed Kim BK, Choi YH, Nguyen TL, Nam SJ, Lee JE, Hopper JL, et al. Mammographic density and risk of breast cancer in Korean women. Eur J Cancer Prev. 2015;24:422–9.CrossRefPubMed
17.
18.
go back to reference Bertrand KA, Scott CG, Tamimi RM, Jensen MR, Pankratz VS, Norman AD, et al. Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2015;24:798–809.CrossRef Bertrand KA, Scott CG, Tamimi RM, Jensen MR, Pankratz VS, Norman AD, et al. Dense and nondense mammographic area and risk of breast cancer by age and tumor characteristics. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2015;24:798–809.CrossRef
19.
go back to reference Antoni S, Sasco AJ, dos Santos Silva I, McCormack V. Is mammographic density differentially associated with breast cancer according to receptor status? A meta-analysis. Breast Cancer Res Treat. 2013;137:337–47.CrossRefPubMed Antoni S, Sasco AJ, dos Santos Silva I, McCormack V. Is mammographic density differentially associated with breast cancer according to receptor status? A meta-analysis. Breast Cancer Res Treat. 2013;137:337–47.CrossRefPubMed
20.
go back to reference Houssami N, Irwig L, Ciatto S. Radiological surveillance of interval breast cancers in screening programmes. The lancet oncology. 2006;7:259–65.CrossRefPubMed Houssami N, Irwig L, Ciatto S. Radiological surveillance of interval breast cancers in screening programmes. The lancet oncology. 2006;7:259–65.CrossRefPubMed
21.
go back to reference Kaviani A, Neishaboury M, Mohammadzadeh N, Ansari-Damavandi M, Jamei K. Effects of obesity on presentation of breast cancer, lymph node metastasis and patient survival: a retrospective review. Asian Pacific journal of cancer prevention: APJCP. 2013;14:2225–9.CrossRefPubMed Kaviani A, Neishaboury M, Mohammadzadeh N, Ansari-Damavandi M, Jamei K. Effects of obesity on presentation of breast cancer, lymph node metastasis and patient survival: a retrospective review. Asian Pacific journal of cancer prevention: APJCP. 2013;14:2225–9.CrossRefPubMed
22.
go back to reference Chen FY, HY O, Wang SM, YH W, Yan GJ, Tang LL. Associations between body mass index and molecular subtypes as well as other clinical characteristics of breast cancer in Chinese women. Ther Clin Risk Manag. 2013;9:131–7.PubMedPubMedCentral Chen FY, HY O, Wang SM, YH W, Yan GJ, Tang LL. Associations between body mass index and molecular subtypes as well as other clinical characteristics of breast cancer in Chinese women. Ther Clin Risk Manag. 2013;9:131–7.PubMedPubMedCentral
23.
go back to reference Keskin O, Aksoy S, Babacan T, Sarici F, Kertmen N, Solak M, et al. Impact of the obesity on lymph node status in operable breast cancer patients. Journal of BUON: official journal of the Balkan Union of Oncology. 2013;18:824–30. Keskin O, Aksoy S, Babacan T, Sarici F, Kertmen N, Solak M, et al. Impact of the obesity on lymph node status in operable breast cancer patients. Journal of BUON: official journal of the Balkan Union of Oncology. 2013;18:824–30.
24.
go back to reference Domingo L, Salas D, Zubizarreta R, Bare M, Sarriugarte G, Barata T, et al. Tumor phenotype and breast density in distinct categories of interval cancer: results of population-based mammography screening in Spain. Breast cancer research: BCR. 2014;16:R3.CrossRefPubMedPubMedCentral Domingo L, Salas D, Zubizarreta R, Bare M, Sarriugarte G, Barata T, et al. Tumor phenotype and breast density in distinct categories of interval cancer: results of population-based mammography screening in Spain. Breast cancer research: BCR. 2014;16:R3.CrossRefPubMedPubMedCentral
26.
go back to reference World Cancer Research Fund/American Institute of Cancer Research. Continuous update project report summary. Food, nutrition, physical activity, and the prevention of breast cancer. 2010; World Cancer Research Fund/American Institute of Cancer Research. Continuous update project report summary. Food, nutrition, physical activity, and the prevention of breast cancer. 2010;
Metadata
Title
Mammographic density and risk of breast cancer by tumor characteristics: a case-control study
Authors
Kavitha Krishnan
Laura Baglietto
Jennifer Stone
Catriona McLean
Melissa C. Southey
Dallas R. English
Graham G. Giles
John L. Hopper
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3871-7

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine