Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Malaria | Research article

Farmers’ pesticide usage practices in the malaria endemic region of North-Western Tanzania: implications to the control of malaria vectors

Authors: Anitha Philbert, Sylvester Leonard Lyantagaye, Gamba Nkwengulila

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l.

Methods

A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2–3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test.

Results

Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures.

Conclusion

The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).
Appendix
Available only for authorised users
Literature
1.
go back to reference World malaria report 2017. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO World malaria report 2017. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO
2.
go back to reference Enayati A, Hemingway J. Malaria management: past, present, and future. Annu Rev Entomol. 2010;55:569–91.PubMedCrossRef Enayati A, Hemingway J. Malaria management: past, present, and future. Annu Rev Entomol. 2010;55:569–91.PubMedCrossRef
3.
go back to reference Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91.PubMedCrossRef Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91.PubMedCrossRef
4.
go back to reference Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I. Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J. 2007;6:52-7.PubMedPubMedCentralCrossRef Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I. Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea. Malar J. 2007;6:52-7.PubMedPubMedCentralCrossRef
5.
go back to reference Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D. Comparative field evaluation of residual-sprayed deltamethrin WG and deltamethrin WP for the control of malaria in Pahang, Malaysia. Asian J Trop Med Public Health. 2006;37(6):1139–48. Rohani A, Zamree I, Lim LH, Rahini H, David L, Kamilan D. Comparative field evaluation of residual-sprayed deltamethrin WG and deltamethrin WP for the control of malaria in Pahang, Malaysia. Asian J Trop Med Public Health. 2006;37(6):1139–48.
6.
go back to reference Giardina F, Kasasa S, Sié A, Utzinger J, Tanner M, Vounatsou P. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet Glob Health. 2014;2:601–15.CrossRef Giardina F, Kasasa S, Sié A, Utzinger J, Tanner M, Vounatsou P. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet Glob Health. 2014;2:601–15.CrossRef
7.
go back to reference Bauch JA, Gu JJ, Msellem M, Mårtensson A, Ali AS, Gosling R, Baltzell KA. Perception of malaria risk in a setting of reduced malaria transmission: a qualitative study in zanzibar. Malar J. 2013;12:75-84. Bauch JA, Gu JJ, Msellem M, Mårtensson A, Ali AS, Gosling R, Baltzell KA. Perception of malaria risk in a setting of reduced malaria transmission: a qualitative study in zanzibar. Malar J. 2013;12:75-84.
8.
go back to reference Kaliyaperumal K, Yesuf D. Knowledge, attitudes and practices of local inhabitants about insecticide treated nets (ITNs) for malaria control in an endemic area of Ethiopia. East Afr J Public Health. 2009;6(2):206–2011. Kaliyaperumal K, Yesuf D. Knowledge, attitudes and practices of local inhabitants about insecticide treated nets (ITNs) for malaria control in an endemic area of Ethiopia. East Afr J Public Health. 2009;6(2):206–2011.
9.
go back to reference Toé PL, Skovmand O, Dabiré RK, Diabaté A, Diallo Y, Guiguemdé TR, Marie J, Doannio C, Akogbeto M, Baldet T, et al. Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso. Malar J. 2009;8:175.PubMedPubMedCentralCrossRef Toé PL, Skovmand O, Dabiré RK, Diabaté A, Diallo Y, Guiguemdé TR, Marie J, Doannio C, Akogbeto M, Baldet T, et al. Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso. Malar J. 2009;8:175.PubMedPubMedCentralCrossRef
10.
go back to reference Kisinza NW, Nkya ET, Kabula B, Overgaard JH, Massue JD, Mageni Z, Greer G, Kaspar N, Mohamed M, Reithinger R, et al. Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control. Malar J. 2017;16. Kisinza NW, Nkya ET, Kabula B, Overgaard JH, Massue JD, Mageni Z, Greer G, Kaspar N, Mohamed M, Reithinger R, et al. Multiple insecticide resistance in Anopheles gambiae from Tanzania: a major concern for malaria vector control. Malar J. 2017;16.
11.
go back to reference Matiya DJ, Philbert AB, Kidima W, Matowo JJ. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: a systematic review. Malar J. 2019;18:439-48. Matiya DJ, Philbert AB, Kidima W, Matowo JJ. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: a systematic review. Malar J. 2019;18:439-48.
12.
go back to reference WHO. World Malaria Report 2005. WHO, Geneva, Switzerland. In: WHO. Geneva: World Health Organization (WHO); 2005. WHO. World Malaria Report 2005. WHO, Geneva, Switzerland. In: WHO. Geneva: World Health Organization (WHO); 2005.
13.
go back to reference Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14(1):1–5.PubMedCrossRef Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14(1):1–5.PubMedCrossRef
14.
go back to reference Ijumba JN, Mosha FW, Lindsay SW. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med Vet Entomol. 2002;16:28–38.PubMedCrossRef Ijumba JN, Mosha FW, Lindsay SW. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med Vet Entomol. 2002;16:28–38.PubMedCrossRef
15.
go back to reference Vanek MJ, Shoo B, Mtasiwa D, Kiama M, Lindsay SW, Fillinger U, Kannady K, Tanner M, Killeen GF. Community-based surveillance of malaria vector larval habitats: a baseline study in urban Dar Es Salaam, Tanzania. BMC Public Health. 2006;6:154-61. Vanek MJ, Shoo B, Mtasiwa D, Kiama M, Lindsay SW, Fillinger U, Kannady K, Tanner M, Killeen GF. Community-based surveillance of malaria vector larval habitats: a baseline study in urban Dar Es Salaam, Tanzania. BMC Public Health. 2006;6:154-61.
16.
go back to reference Balkew M, Ibrahim M, Koekemoer L, L, Brooke D, B, Engers H, Aseffa A, Teshome Gebre-Michael, Elhassen I. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central,northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors. 2010;3:40-5. Balkew M, Ibrahim M, Koekemoer L, L, Brooke D, B, Engers H, Aseffa A, Teshome Gebre-Michael, Elhassen I. Insecticide resistance in Anopheles arabiensis (Diptera: Culicidae) from villages in central,northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors. 2010;3:40-5.
17.
go back to reference Ntow WJ, Gijzen JH, Peter Kelderman P, Drechsel P. Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag Sci. 2006;62:356–65.PubMedCrossRef Ntow WJ, Gijzen JH, Peter Kelderman P, Drechsel P. Farmer perceptions and pesticide use practices in vegetable production in Ghana. Pest Manag Sci. 2006;62:356–65.PubMedCrossRef
18.
go back to reference Oluwole O, Cheke RA. Health and environmental impacts of pesticide use practices:a case study of farmers in Ekiti state, Nigeria. Int J Agric Sustain. 2009;7(3):153–63.CrossRef Oluwole O, Cheke RA. Health and environmental impacts of pesticide use practices:a case study of farmers in Ekiti state, Nigeria. Int J Agric Sustain. 2009;7(3):153–63.CrossRef
19.
go back to reference Ngowi AV, Mbise TJ, Ijani AS, London L, Ajayi OC. Pesticides use by smallholder farmers in vegetable production in Northern Tanzania. Crop Prot. 2007;26:1617–24.PubMedPubMedCentralCrossRef Ngowi AV, Mbise TJ, Ijani AS, London L, Ajayi OC. Pesticides use by smallholder farmers in vegetable production in Northern Tanzania. Crop Prot. 2007;26:1617–24.PubMedPubMedCentralCrossRef
20.
go back to reference Lekei E, Ngowi VA, London L. Hospital-based surveillance for acute pesticide poisoning caused by neurotoxic and other pesticides in Tanzania. Neuro Toxicology. 2014;9:389-401. Lekei E, Ngowi VA, London L. Hospital-based surveillance for acute pesticide poisoning caused by neurotoxic and other pesticides in Tanzania. Neuro Toxicology. 2014;9:389-401.
21.
go back to reference Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region), vol. 54. 2nd ed. Institute for Medical Research: Johannesburg; 1968. Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region), vol. 54. 2nd ed. Institute for Medical Research: Johannesburg; 1968.
22.
go back to reference Gillies MT, Coetzee M. A Suppliment to the Anophelinae of Africa south of the Sahara (Afrotropical region). Johannesburg: The South African Institute for Medical Research; 1987. Gillies MT, Coetzee M. A Suppliment to the Anophelinae of Africa south of the Sahara (Afrotropical region). Johannesburg: The South African Institute for Medical Research; 1987.
23.
go back to reference WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. In: WHO. Geneva: World Health Organization (WHO); 2013. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. In: WHO. Geneva: World Health Organization (WHO); 2013.
24.
go back to reference Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMedCrossRef Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–9.PubMedCrossRef
25.
go back to reference Coetzee M, Craig M, LS D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000;16:74–7.PubMedCrossRef Coetzee M, Craig M, LS D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today. 2000;16:74–7.PubMedCrossRef
26.
go back to reference Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.PubMedCrossRef Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84.PubMedCrossRef
27.
go back to reference Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.PubMedCrossRef Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–7.PubMedCrossRef
28.
go back to reference Williamson S, Ball A, Pretty J. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 2008;27:1327–34.CrossRef Williamson S, Ball A, Pretty J. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 2008;27:1327–34.CrossRef
29.
go back to reference Lekei EE. Establishment of a comprehensive surveillance system for acute pesticicde poisoning in Tanzania. South Africa: University of Capetown; 2012. Lekei EE. Establishment of a comprehensive surveillance system for acute pesticicde poisoning in Tanzania. South Africa: University of Capetown; 2012.
30.
go back to reference Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P. Athropod pest resurgence: an overview of pontential mechanisms. Crop Prot. 1995;14:3–18.CrossRef Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P. Athropod pest resurgence: an overview of pontential mechanisms. Crop Prot. 1995;14:3–18.CrossRef
31.
go back to reference Islam MW, Dastogeer KMG, Hamim I, Prodhan MDH, Ashrafuzzaman M. Detection and quantification of pesticide residues in selected vegetables of Bangladesh. Journal of Phytopathology and Pest Management. 2014;1(2):17–30. Islam MW, Dastogeer KMG, Hamim I, Prodhan MDH, Ashrafuzzaman M. Detection and quantification of pesticide residues in selected vegetables of Bangladesh. Journal of Phytopathology and Pest Management. 2014;1(2):17–30.
32.
go back to reference Ajayi OC. Biological capital, user costs and the productivity of insecticides in cotton farming Systems in sub-Saharan Africa. Int J Agric Sustain. 2005;3(3):154–66.CrossRef Ajayi OC. Biological capital, user costs and the productivity of insecticides in cotton farming Systems in sub-Saharan Africa. Int J Agric Sustain. 2005;3(3):154–66.CrossRef
33.
go back to reference Philbert A, Lyantagaye SL, Pradel G, Ngwa CJ, Nkwengulila G. Pyrethroids and DDT tolerance of Anopheles gambiae s.l. from Sengerema District, an area of intensive pesticide usage in North-Western Tanzania. Tropical Med Int Health. 2017;22(4):388–98.CrossRef Philbert A, Lyantagaye SL, Pradel G, Ngwa CJ, Nkwengulila G. Pyrethroids and DDT tolerance of Anopheles gambiae s.l. from Sengerema District, an area of intensive pesticide usage in North-Western Tanzania. Tropical Med Int Health. 2017;22(4):388–98.CrossRef
34.
go back to reference Mahande A, Mosha F, Mahande J, Kweka E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J. 2007;6:100.PubMedPubMedCentralCrossRef Mahande A, Mosha F, Mahande J, Kweka E. Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J. 2007;6:100.PubMedPubMedCentralCrossRef
35.
go back to reference Kabula B, Kisinza W, Tungu P, Ndege C, Batengana B, Kollo D, Malima R, Kafuko J, Mohamed M, Magesa S. Co-occurrence and distribution of east (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania. Tropical Med Int Health. 2014;1-11. https://doi.org/10.1111/tmi.12248.CrossRef Kabula B, Kisinza W, Tungu P, Ndege C, Batengana B, Kollo D, Malima R, Kafuko J, Mohamed M, Magesa S. Co-occurrence and distribution of east (L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania. Tropical Med Int Health. 2014;1-11. https://​doi.​org/​10.​1111/​tmi.​12248.CrossRef
36.
go back to reference Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David JP. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480–91.PubMedPubMedCentral Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David JP. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480–91.PubMedPubMedCentral
37.
go back to reference Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R. Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP ELISA method. Malar J. 2006;5:56.PubMedPubMedCentralCrossRef Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R. Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP ELISA method. Malar J. 2006;5:56.PubMedPubMedCentralCrossRef
38.
go back to reference Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West PA, Kleinschmidt I, Kisinza W, Mosha FW, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in North-Western Tanzania. Malar J. 2013;12:149–56.PubMedPubMedCentralCrossRef Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West PA, Kleinschmidt I, Kisinza W, Mosha FW, et al. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in North-Western Tanzania. Malar J. 2013;12:149–56.PubMedPubMedCentralCrossRef
39.
go back to reference Crissman CC, Cole DC, Carpio F. Pesticide use and farm worker health in Ecuadorian potato production. Am J Agric Econ. 1994;76:593–7.CrossRef Crissman CC, Cole DC, Carpio F. Pesticide use and farm worker health in Ecuadorian potato production. Am J Agric Econ. 1994;76:593–7.CrossRef
40.
go back to reference Indraningsih SY, Widiastuti R. Evaluation of farmers’ appreciation in reducing pesticide by organic farming practice. Indones J Agric Sci. 2005;6(2):59-68.CrossRef Indraningsih SY, Widiastuti R. Evaluation of farmers’ appreciation in reducing pesticide by organic farming practice. Indones J Agric Sci. 2005;6(2):59-68.CrossRef
41.
go back to reference Ajayi OC, Akinnifesi FK. Farmers’ understanding of pesticide safety labels and field spraying practices: a case study of cotton farmers in northern Côte d’Ivoire. Sci Res Essay. 2007;2(6):204–10. Ajayi OC, Akinnifesi FK. Farmers’ understanding of pesticide safety labels and field spraying practices: a case study of cotton farmers in northern Côte d’Ivoire. Sci Res Essay. 2007;2(6):204–10.
42.
go back to reference Diabate A, Baldet T, Chandre F, Akogbeto M, Darriet F, Brengues C, Guiguemde T, Guillet P, Hemingway J, Hougard J. The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg. 2002;67:617–22.PubMedCrossRef Diabate A, Baldet T, Chandre F, Akogbeto M, Darriet F, Brengues C, Guiguemde T, Guillet P, Hemingway J, Hougard J. The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg. 2002;67:617–22.PubMedCrossRef
43.
go back to reference Overgaard HJ. Malaria mosquito resistance to agricultural insecticides: risk area mapping in Thailand. In: IWMI Research Report Colombo. Sri Lanka: International Water Management Institute; 2006. Overgaard HJ. Malaria mosquito resistance to agricultural insecticides: risk area mapping in Thailand. In: IWMI Research Report Colombo. Sri Lanka: International Water Management Institute; 2006.
44.
go back to reference Georghiou GP. The effect of agrochemicals on vector populations. In: Pesticide resistance in arthropods. New York: Chapman and Hall; 1990a. p. 183–202.CrossRef Georghiou GP. The effect of agrochemicals on vector populations. In: Pesticide resistance in arthropods. New York: Chapman and Hall; 1990a. p. 183–202.CrossRef
45.
go back to reference Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David JP. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480–91.PubMedPubMedCentral Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David JP. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480–91.PubMedPubMedCentral
46.
go back to reference Metacalf RL. Changing role of insecticides in crop protection. Annu Rev Entomol. 1980;25:119–256. Metacalf RL. Changing role of insecticides in crop protection. Annu Rev Entomol. 1980;25:119–256.
Metadata
Title
Farmers’ pesticide usage practices in the malaria endemic region of North-Western Tanzania: implications to the control of malaria vectors
Authors
Anitha Philbert
Sylvester Leonard Lyantagaye
Gamba Nkwengulila
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
Malaria
Plague
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-7767-0

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue