Skip to main content
Top
Published in: Diabetologia 3/2006

01-03-2006 | Article

Major quantitative trait locus on chromosome 2 for glucose tolerance in diabetic SMXA-5 mouse established from non-diabetic SM/J and A/J strains

Authors: M. Kobayashi, F. Io, T. Kawai, M. Kumazawa, H. Ikegami, M. Nishimura, T. Ohno, F. Horio

Published in: Diabetologia | Issue 3/2006

Login to get access

Abstract

Aims/hypothesis

The SMXA-5 mouse is one of the SMXA recombinant inbred substrains established from the non-diabetic SM/J and A/J strains, and is a model for polygenic type 2 diabetes, characterised by moderately impaired glucose tolerance and hyperinsulinaemia. These diabetic traits are worsened by feeding a high-fat diet. The aim of this study was to dissect the diabetogenic loci in the A/J regions of the SMXA-5 genome that contribute to diabetes-related traits.

Materials and methods

We analysed the quantitative trait loci (QTL) for diabetes-related traits and obesity in (SM/J×SMXA-5)F2 intercross mice fed a high-fat diet. To verify the function of the responsible locus that was mapped in the present study, we constructed a congenic strain and characterised its diabetes-related traits.

Results

A major QTL for glucose tolerance, free-fed blood glucose concentration and BMI was mapped on chromosome 2. This locus existed near D2Mit15, with the highest logarithm of the odds score (12.6) for glucose concentration at 120 min in a glucose tolerance test, and was designated T2dm2sa. The diabetogenic allele of T2dm2sa originated in the A/J strain. SM.A-T2dm2sa, a congenic strain that introgressed the T2dm2sa region of A/J genome into SM/J, exhibited overt impaired glucose tolerance and hyperinsulinaemia.

Conclusions/interpretation

The development of impaired glucose tolerance in SM.A-T2dm2sa mice confirmed the results of QTL analysis for diabetes-related traits in F2 intercross mice. The present results suggest that there are latent diabetogenic loci in the genomes of non-diabetic A/J and SM/J mice, and that the coexistence of these loci, including T2dm2sa, causes impaired glucose tolerance in SMXA-5 and SM.A-T2dm2sa mice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Warm JH, Rich SS, Krolewski AS (1994) Epidemiology and genetics of diabetes mellitus. In: Kahn C, Weir G (eds) Joslin’s diabetes mellitus. Lea and Febiger, Philadelphia, Pennsylvania, pp 201–215 Warm JH, Rich SS, Krolewski AS (1994) Epidemiology and genetics of diabetes mellitus. In: Kahn C, Weir G (eds) Joslin’s diabetes mellitus. Lea and Febiger, Philadelphia, Pennsylvania, pp 201–215
2.
go back to reference Galli J, Li LS, Glaser A et al (1996) Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 12:31–37CrossRefPubMed Galli J, Li LS, Glaser A et al (1996) Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Nat Genet 12:31–37CrossRefPubMed
3.
go back to reference Gauguier D, Froguel P, Parent V et al (1996) Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 12:38–43CrossRefPubMed Gauguier D, Froguel P, Parent V et al (1996) Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 12:38–43CrossRefPubMed
4.
go back to reference Kanemoto N, Hishigaki H, Miyakita A et al (1998) Genetic dissection of ‘OLETF’, a rat model for non-insulin-dependent diabetes mellitus. Mamm Genome 9:419–425CrossRefPubMed Kanemoto N, Hishigaki H, Miyakita A et al (1998) Genetic dissection of ‘OLETF’, a rat model for non-insulin-dependent diabetes mellitus. Mamm Genome 9:419–425CrossRefPubMed
5.
go back to reference Moralejo DH, Ogino T, Zhu M et al (1998) A major quantitative trait locus co-localizing with cholecystokinin type A receptor gene influences poor pancreatic proliferation in a spontaneously diabetogenic rat. Mamm Genome 9:794–798CrossRefPubMed Moralejo DH, Ogino T, Zhu M et al (1998) A major quantitative trait locus co-localizing with cholecystokinin type A receptor gene influences poor pancreatic proliferation in a spontaneously diabetogenic rat. Mamm Genome 9:794–798CrossRefPubMed
6.
go back to reference Wei S, Wei K, Moralejo DH et al (1999) Mapping and characterization of quantitative trait loci for non-insulin-dependent diabetes mellitus with an improved genetic map in the Otsuka Long-Evans Tokushima fatty rat. Mamm Genome 10:249–258PubMedCrossRef Wei S, Wei K, Moralejo DH et al (1999) Mapping and characterization of quantitative trait loci for non-insulin-dependent diabetes mellitus with an improved genetic map in the Otsuka Long-Evans Tokushima fatty rat. Mamm Genome 10:249–258PubMedCrossRef
7.
go back to reference Sugiura K, Miyake T, Taniguchi Y et al (1999) Identification of novel non-insulin-dependent diabetes mellitus susceptibility loci in the Otsuka Long-Evans Tokushima fatty rat by MQM-mapping method. Mamm Genome 10:1126–1131CrossRefPubMed Sugiura K, Miyake T, Taniguchi Y et al (1999) Identification of novel non-insulin-dependent diabetes mellitus susceptibility loci in the Otsuka Long-Evans Tokushima fatty rat by MQM-mapping method. Mamm Genome 10:1126–1131CrossRefPubMed
8.
go back to reference Masuyama T, Fuse M, Yokoi N et al (2003) Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, spontaneously diabetic torii rat. Biochem Biophys Res Commun 304:196–206CrossRefPubMed Masuyama T, Fuse M, Yokoi N et al (2003) Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, spontaneously diabetic torii rat. Biochem Biophys Res Commun 304:196–206CrossRefPubMed
9.
go back to reference Ueda H, Ikegami H, Kawaguchi Y et al (1999) Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 48:1168–1174PubMedCrossRef Ueda H, Ikegami H, Kawaguchi Y et al (1999) Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 48:1168–1174PubMedCrossRef
10.
go back to reference Leiter EH, Reifsnyder PC, Flurkey K, Partke HJ, Junger E, Herberg L (1998) NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes 47:1287–1295PubMedCrossRef Leiter EH, Reifsnyder PC, Flurkey K, Partke HJ, Junger E, Herberg L (1998) NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes 47:1287–1295PubMedCrossRef
11.
go back to reference Plum L, Giesen K, Kluge R et al (2002) Characterisation of the mouse diabetes susceptibility locus Nidd/SJL: islet cell destruction, interaction with the obesity QTL Nob1, and effect of dietary fat. Diabetologia 45:823–830CrossRefPubMed Plum L, Giesen K, Kluge R et al (2002) Characterisation of the mouse diabetes susceptibility locus Nidd/SJL: islet cell destruction, interaction with the obesity QTL Nob1, and effect of dietary fat. Diabetologia 45:823–830CrossRefPubMed
12.
go back to reference Hirayama I, Yi Z, Izumi S et al (1999) Genetic analysis of obese diabetes in the TSOD mouse. Diabetes 48:1183–1191PubMedCrossRef Hirayama I, Yi Z, Izumi S et al (1999) Genetic analysis of obese diabetes in the TSOD mouse. Diabetes 48:1183–1191PubMedCrossRef
13.
go back to reference Shike T, Hirose S, Kobayashi M, Funabiki K, Shirai T, Tomino Y (2001) Susceptibility and negative epistatic loci contributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model. Diabetes 50:1943–1948PubMedCrossRef Shike T, Hirose S, Kobayashi M, Funabiki K, Shirai T, Tomino Y (2001) Susceptibility and negative epistatic loci contributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model. Diabetes 50:1943–1948PubMedCrossRef
14.
go back to reference Suto J, Matsuura S, Imamura K, Yamanaka H, Sekikawa K (1998) Genetics of obesity in KK mouse and effects of Ay allele on quantitative regulation. Mamm Genome 9:506–510CrossRefPubMed Suto J, Matsuura S, Imamura K, Yamanaka H, Sekikawa K (1998) Genetics of obesity in KK mouse and effects of Ay allele on quantitative regulation. Mamm Genome 9:506–510CrossRefPubMed
15.
go back to reference Suto J, Matsuura S, Imamura K, Yamanaka H, Sekikawa K (1998) Genetic analysis of non-insulin dependent diabetes mellitus in KK and KK-Ay mice. Eur J Endocrinol 139:654–661CrossRefPubMed Suto J, Matsuura S, Imamura K, Yamanaka H, Sekikawa K (1998) Genetic analysis of non-insulin dependent diabetes mellitus in KK and KK-Ay mice. Eur J Endocrinol 139:654–661CrossRefPubMed
16.
go back to reference Kim JH, Sen S, Avery CS et al (2001) Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics 74:273–286CrossRefPubMed Kim JH, Sen S, Avery CS et al (2001) Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics 74:273–286CrossRefPubMed
17.
go back to reference Nishimura M, Hirayama N, Serikawa T et al (1995) The SMXA: a new set of recombinant inbred strain of mice consisting of 26 substrains and their genetic profile. Mamm Genome 6:850–857CrossRefPubMed Nishimura M, Hirayama N, Serikawa T et al (1995) The SMXA: a new set of recombinant inbred strain of mice consisting of 26 substrains and their genetic profile. Mamm Genome 6:850–857CrossRefPubMed
18.
go back to reference Anunciado RV, Horio F, Ohno T, Tanaka S, Nishimura M, Namikawa T (2000) Characterization of hyperinsulinemic recombinant inbred (RI) strains (SMXA-5 and SMXA-9) derived from normoinsulinemic SM/J and A/J mice. Exp Anim 49:83–90CrossRefPubMed Anunciado RV, Horio F, Ohno T, Tanaka S, Nishimura M, Namikawa T (2000) Characterization of hyperinsulinemic recombinant inbred (RI) strains (SMXA-5 and SMXA-9) derived from normoinsulinemic SM/J and A/J mice. Exp Anim 49:83–90CrossRefPubMed
19.
go back to reference Kobayashi M, Ohno T, Tsuji A, Nishimura M, Horio F (2003) Combinations of nondiabetic parental genomes elicit impaired glucose tolerance in mouse SMXA recombinant inbred strains. Diabetes 52:180–186PubMedCrossRef Kobayashi M, Ohno T, Tsuji A, Nishimura M, Horio F (2003) Combinations of nondiabetic parental genomes elicit impaired glucose tolerance in mouse SMXA recombinant inbred strains. Diabetes 52:180–186PubMedCrossRef
20.
go back to reference Kobayashi M, Io F, Kawai T, Nishimura M, Ohno T, Horio F (2004) SMXA-5 mouse as a diabetic model susceptible to feeding a high-fat diet. Biosci Biotechnol Biochem 68:226–230CrossRefPubMed Kobayashi M, Io F, Kawai T, Nishimura M, Ohno T, Horio F (2004) SMXA-5 mouse as a diabetic model susceptible to feeding a high-fat diet. Biosci Biotechnol Biochem 68:226–230CrossRefPubMed
21.
go back to reference Markel P, Shu P, Ebeling C et al (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280–284PubMedCrossRef Markel P, Shu P, Ebeling C et al (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17:280–284PubMedCrossRef
22.
go back to reference Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951PubMed Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951PubMed
23.
go back to reference Ohno T, Katoh J, Kikkawa Y, Yonekawa H, Nishimura M (2003) Improved strain distribution patterns of SMXA recombinant inbred strains by microsatellite markers. Exp Anim 52:415–417CrossRefPubMed Ohno T, Katoh J, Kikkawa Y, Yonekawa H, Nishimura M (2003) Improved strain distribution patterns of SMXA recombinant inbred strains by microsatellite markers. Exp Anim 52:415–417CrossRefPubMed
24.
go back to reference Silver LM (1995) Genetic markers. In: Silver LM (ed.) Mouse genetics. Oxford University Press, New York, pp 184–190 Silver LM (1995) Genetic markers. In: Silver LM (ed.) Mouse genetics. Oxford University Press, New York, pp 184–190
25.
go back to reference Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334CrossRefPubMed Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 10:327–334CrossRefPubMed
26.
go back to reference Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMed Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMed
27.
go back to reference Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMed Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMed
28.
go back to reference Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMed Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMed
29.
go back to reference Lynch M, Walsh B (1997) Mapping and characterizing QTLs: inbred line crosses. In: Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, Massachusetts, pp 431–489 Lynch M, Walsh B (1997) Mapping and characterizing QTLs: inbred line crosses. In: Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, Massachusetts, pp 431–489
30.
go back to reference Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247CrossRefPubMed Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247CrossRefPubMed
31.
go back to reference Mehrabian M, Wen PZ, Fisler J, Davis RC, Lusis AJ (1998) Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J Clin Invest 101:2485–2496PubMedCrossRef Mehrabian M, Wen PZ, Fisler J, Davis RC, Lusis AJ (1998) Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J Clin Invest 101:2485–2496PubMedCrossRef
32.
go back to reference Estrada-Smith D, Castellani LW, Wong H et al (2004) Dissection of multigenic obesity traits in congenic mouse strains. Mamm Genome 15:14–22CrossRefPubMed Estrada-Smith D, Castellani LW, Wong H et al (2004) Dissection of multigenic obesity traits in congenic mouse strains. Mamm Genome 15:14–22CrossRefPubMed
33.
go back to reference Stoehr JP, Nadler ST, Schueler KI et al (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49:1946–1954PubMedCrossRef Stoehr JP, Nadler ST, Schueler KI et al (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49:1946–1954PubMedCrossRef
34.
go back to reference Stoehr JP, Byers JE, Clee SM et al (2004) Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. Diabetes 53:245–249PubMedCrossRef Stoehr JP, Byers JE, Clee SM et al (2004) Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. Diabetes 53:245–249PubMedCrossRef
35.
go back to reference Young TL, Penny L, Woods MO et al (1999) A fifth locus for Bardet–Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 64:900–904CrossRefPubMed Young TL, Penny L, Woods MO et al (1999) A fifth locus for Bardet–Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 64:900–904CrossRefPubMed
36.
go back to reference Beales PL, Katsanis N, Lewis RA et al (2001) Genetic and mutational analyses of a large multiethnic Bardet–Biedl cohort reveal a minor involvement of BBS6 and delineate the critical intervals of other loci. Am J Hum Genet 68:606–616CrossRefPubMed Beales PL, Katsanis N, Lewis RA et al (2001) Genetic and mutational analyses of a large multiethnic Bardet–Biedl cohort reveal a minor involvement of BBS6 and delineate the critical intervals of other loci. Am J Hum Genet 68:606–616CrossRefPubMed
37.
go back to reference Zouali H, Hani EH, Philippi A et al (1997) A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet 6:1401–1408CrossRefPubMed Zouali H, Hani EH, Philippi A et al (1997) A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet 6:1401–1408CrossRefPubMed
38.
go back to reference Hunt SC, Abkevich V, Hensel CH et al (2001) Linkage of body mass index to chromosome 20 in Utah pedigrees. Hum Genet 109:279–285CrossRefPubMed Hunt SC, Abkevich V, Hensel CH et al (2001) Linkage of body mass index to chromosome 20 in Utah pedigrees. Hum Genet 109:279–285CrossRefPubMed
39.
go back to reference Permutt MA, Wasson J, Love-Gregory L et al (2002) Searching for type 2 diabetes genes on chromosome 20. Diabetes 51 (Suppl 3):S308–S315PubMedCrossRef Permutt MA, Wasson J, Love-Gregory L et al (2002) Searching for type 2 diabetes genes on chromosome 20. Diabetes 51 (Suppl 3):S308–S315PubMedCrossRef
40.
go back to reference Kovács P, van den Brandt J, Klöting I (2000) Genetic dissection of the syndrome X in the rat. Biochem Biophys Res Commun 269:660–665CrossRefPubMed Kovács P, van den Brandt J, Klöting I (2000) Genetic dissection of the syndrome X in the rat. Biochem Biophys Res Commun 269:660–665CrossRefPubMed
41.
go back to reference Lehmann JM, Kliewer SA, Moore LB et al (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272:3137–3140CrossRefPubMed Lehmann JM, Kliewer SA, Moore LB et al (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272:3137–3140CrossRefPubMed
42.
go back to reference Peet DJ, Turley SD, Ma W et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704CrossRefPubMed Peet DJ, Turley SD, Ma W et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93:693–704CrossRefPubMed
43.
go back to reference Cao G, Liang Y, Broderick CL et al (2003) Antidiabetic action of a liver X receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 278:1131–1136CrossRefPubMed Cao G, Liang Y, Broderick CL et al (2003) Antidiabetic action of a liver X receptor agonist mediated by inhibition of hepatic gluconeogenesis. J Biol Chem 278:1131–1136CrossRefPubMed
44.
go back to reference Stulnig TM, Steffensen KR, Gao H et al (2002) Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue. Mol Pharmacol 62:1299–1305CrossRefPubMed Stulnig TM, Steffensen KR, Gao H et al (2002) Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue. Mol Pharmacol 62:1299–1305CrossRefPubMed
45.
go back to reference Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424CrossRefPubMed Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424CrossRefPubMed
46.
go back to reference Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI (2003) Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem 278:48283–48291CrossRefPubMed Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI (2003) Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem 278:48283–48291CrossRefPubMed
47.
go back to reference Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S (2000) Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i × DBA/2 mice. Genome Res 10:1941–1957CrossRefPubMed Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S (2000) Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i × DBA/2 mice. Genome Res 10:1941–1957CrossRefPubMed
48.
go back to reference Anunciado RV, Ohno T, Mori M et al (2000) Distribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis. Exp Anim 49:217–224CrossRefPubMed Anunciado RV, Ohno T, Mori M et al (2000) Distribution of body weight, blood insulin and lipid levels in the SMXA recombinant inbred strains and the QTL analysis. Exp Anim 49:217–224CrossRefPubMed
49.
go back to reference Anunciado RV, Nishimura M, Mori M et al (2003) Quantitative trait locus analysis of serum insulin, triglyceride, total cholesterol and phospholipid levels in the (SM/J × A/J)F2 mice. Exp Anim 52:37–42CrossRefPubMed Anunciado RV, Nishimura M, Mori M et al (2003) Quantitative trait locus analysis of serum insulin, triglyceride, total cholesterol and phospholipid levels in the (SM/J × A/J)F2 mice. Exp Anim 52:37–42CrossRefPubMed
Metadata
Title
Major quantitative trait locus on chromosome 2 for glucose tolerance in diabetic SMXA-5 mouse established from non-diabetic SM/J and A/J strains
Authors
M. Kobayashi
F. Io
T. Kawai
M. Kumazawa
H. Ikegami
M. Nishimura
T. Ohno
F. Horio
Publication date
01-03-2006
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 3/2006
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-005-0121-3

Other articles of this Issue 3/2006

Diabetologia 3/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine