Skip to main content
Top
Published in: MUSCULOSKELETAL SURGERY 2/2009

01-09-2009 | Case Report

Major bone defect treatment with an osteoconductive bone substitute

Authors: Stefania Paderni, S. Terzi, L. Amendola

Published in: MUSCULOSKELETAL SURGERY | Issue 2/2009

Login to get access

Abstract

A bone defect can be provoked by several pathological conditions (e.g. bone tumours, infections, major trauma with bone stock loss) or by surgical procedures, required for the appropriate treatment. Surgical techniques currently used for treating bone defects may count on different alternatives, including autologous vascularized bone grafts, homologous bone graft provided by musculoskeletal tissue bank, heterologous bone graft (xenograft), or prostheses, each one of them dealing with both specific advantages and complications and drawbacks. The main concerns related to these techniques respectively are: donor site morbidity and limited available amount; possible immune response and viral transmission; possible animal-derived pathogen transmission and risk of immunogenic rejection; high invasiveness and surgery-related systemic risks, long post-operative. physical recovery and prostheses revision need. Nowadays, an ideal alternative is the use of osteoconductive synthetic bone substitutes. Many synthetic substitutes are available, used either alone or in combination with other bone graft. Synthetic bone graft materials available as alternatives to autogeneous bone include calcium sulphates, special glass ceramics (bioactive glasses) and calcium phosphates (calcium hydroxyapatite, HA; tricalcium phosphate, TCP; and biphasic calcium phosphate, BCP). These materials differ in composition and physical properties fro each other and from bone (De Groot in Bioceramics of calcium phosphate, pp 100–114, 1983; Hench in J Am Ceram Soc 74:1487–1510, 1994; Jarcho in Clin Orthop 157:259–278, 1981; Daculsi et al. in Int Rev Cytol 172:129–191, 1996). Both stoichiometric and non-stoichiometric HA-based substitutes represent the current first choice in orthopedic surgery, in that they provide an osteoconductive scaffold to which chemotactic, circulating proteins and cells (e.g. mesenchymal stem cells, osteoinductive growth factors) can migrate and adhere, and within which progenitor cells can differentiate into functioning osteoblasts (Szpalski and Gunzburg in Orthopedics 25S:601–609, 2002). Indeed, HA may be extemporarily combined either with whole autologous bone marrow or PRP (platelet rich plasma) gel inside surgical theatre in order to favour and accelerate bone regeneration. A case of bifocal ulnar bone defect treated with stoichiometric HA-based bone substitute combined with PRP is reported in here, with a 12-month-radiographic follow-up.
Literature
1.
go back to reference De Groot K (1983) Ceramics of calcium phosphates: preparation and properties. In: De Groot K (ed) Bioceramics of calcium phosphate. CRC Press, Boca Raton, FL, pp 100–114 De Groot K (1983) Ceramics of calcium phosphates: preparation and properties. In: De Groot K (ed) Bioceramics of calcium phosphate. CRC Press, Boca Raton, FL, pp 100–114
2.
go back to reference Hench LL (1994) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510CrossRef Hench LL (1994) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510CrossRef
3.
go back to reference Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278PubMed Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278PubMed
4.
go back to reference Daculsi G, Bouler JM, Legeros RZ (1996) Adaptive crystal formation: in normal and pathological calcification, in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191CrossRef Daculsi G, Bouler JM, Legeros RZ (1996) Adaptive crystal formation: in normal and pathological calcification, in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191CrossRef
5.
go back to reference Szpalski M, Gunzburg R (2002) Bone void fillers in trauma surgery. Orthopedics 25S:601–609 Szpalski M, Gunzburg R (2002) Bone void fillers in trauma surgery. Orthopedics 25S:601–609
6.
go back to reference Eijkelkamp MF, Hayen J, Veldhuizen AG, van Horn JR, Verkerke GJ (2002) Improving the fixation of an artificial intervertebral disc. Int J Artif Organs 25:327–333PubMed Eijkelkamp MF, Hayen J, Veldhuizen AG, van Horn JR, Verkerke GJ (2002) Improving the fixation of an artificial intervertebral disc. Int J Artif Organs 25:327–333PubMed
7.
go back to reference Taylor GI (1983) The current status of free vascularized bone grafts. Clin Plast Surg 10:185–209PubMed Taylor GI (1983) The current status of free vascularized bone grafts. Clin Plast Surg 10:185–209PubMed
8.
go back to reference Vail TP, Urbaniak JR (1996) Donor-site morbidity with use of vascularized autogenous fibular grafts. J Bone Joint Surg Am 78(2):204–211PubMed Vail TP, Urbaniak JR (1996) Donor-site morbidity with use of vascularized autogenous fibular grafts. J Bone Joint Surg Am 78(2):204–211PubMed
9.
go back to reference Marcacci M (2004) Impiego della bioingegneria per la rigenerazione del tessuto osseo e cartilagineo. Minerva Ortop Traumatol 55(5):209–226 Marcacci M (2004) Impiego della bioingegneria per la rigenerazione del tessuto osseo e cartilagineo. Minerva Ortop Traumatol 55(5):209–226
10.
go back to reference Martinetti R, Belpassi A, Nataloni A, Biasimi V, Martignani G (1999) Porous hydroxyapatite as synthetic bone graft: physico-chemical characterisation. Atti Biomateriali, Roma Martinetti R, Belpassi A, Nataloni A, Biasimi V, Martignani G (1999) Porous hydroxyapatite as synthetic bone graft: physico-chemical characterisation. Atti Biomateriali, Roma
11.
go back to reference Donati D, Giacobini S, Gozzi E, Di Bella C, Mercuri M (2003) The results of the surgical treatment of bone tumors using massive homoplastic grafts. Chir Organi Mov 88(2):115–122PubMed Donati D, Giacobini S, Gozzi E, Di Bella C, Mercuri M (2003) The results of the surgical treatment of bone tumors using massive homoplastic grafts. Chir Organi Mov 88(2):115–122PubMed
12.
go back to reference Nizard R, Bizot P, Kerboull L, Sedel L (1996) Biomatériaux orthopédiques. Encyclopédie Médico Chirurgicale 44-003:1–15 Nizard R, Bizot P, Kerboull L, Sedel L (1996) Biomatériaux orthopédiques. Encyclopédie Médico Chirurgicale 44-003:1–15
13.
go back to reference Martinetti R, Belpassi A, Nataloni A, Piconi C (2001) Porous hydroxyapatite cell carrier for tissue engineering. Key Engineering Materials 192–195:507–510CrossRef Martinetti R, Belpassi A, Nataloni A, Piconi C (2001) Porous hydroxyapatite cell carrier for tissue engineering. Key Engineering Materials 192–195:507–510CrossRef
14.
go back to reference Martinetti R, Dolcini L, Belassi A, Quarto R, Mastrogiacomo M, Cancedda R, Labanti M (2004) Inspired porousity for cells and tissues. Key Engineering Materials 254–256(109):5–1098 Martinetti R, Dolcini L, Belassi A, Quarto R, Mastrogiacomo M, Cancedda R, Labanti M (2004) Inspired porousity for cells and tissues. Key Engineering Materials 254–256(109):5–1098
15.
go back to reference Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 8:277–284PubMedCrossRef Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res 8:277–284PubMedCrossRef
16.
go back to reference Cazalbou S, Bastiè C, Chatainier G, Theilgaard N, Svendsen N, Martinetti R, Dolcini L, Hamblin J, Stewart G, Di Silvio L, Gurav N, Quarto R, Overgaard S, Zippor B, Lemure A, Combes C, Reyi C (2004) Processing of Ca–P ceramics, surface characteristics and biological performance. Key Engineering Materials 254–256(83):3–836 Cazalbou S, Bastiè C, Chatainier G, Theilgaard N, Svendsen N, Martinetti R, Dolcini L, Hamblin J, Stewart G, Di Silvio L, Gurav N, Quarto R, Overgaard S, Zippor B, Lemure A, Combes C, Reyi C (2004) Processing of Ca–P ceramics, surface characteristics and biological performance. Key Engineering Materials 254–256(83):3–836
17.
go back to reference Boyde A, Corsi A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24(6):579–589PubMedCrossRef Boyde A, Corsi A, Quarto R, Cancedda R, Bianco P (1999) Osteoconduction in large macroporous hydroxyapatite ceramic implants: evidence for a complementary integration and disintegration mechanism. Bone 24(6):579–589PubMedCrossRef
18.
go back to reference Casabona F, Martin I, Muraglia A, Berrino P, Santi P, Cancedda R, Quarto R (1998) Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg 101(3):577–581PubMedCrossRef Casabona F, Martin I, Muraglia A, Berrino P, Santi P, Cancedda R, Quarto R (1998) Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg 101(3):577–581PubMedCrossRef
19.
go back to reference Mastrogiacomo M, Cedola A, Komlev VS, Peyrin F, Burghammer M, Giannoni P, Cancedda R, Rustichelli F, Lagomarsino S (2004) Advanced X-ray micro-analysis of bone regenerated by bone marrow stromal cells. In: Proceeding 9th meeting ceramics, cells and tissues Mastrogiacomo M, Cedola A, Komlev VS, Peyrin F, Burghammer M, Giannoni P, Cancedda R, Rustichelli F, Lagomarsino S (2004) Advanced X-ray micro-analysis of bone regenerated by bone marrow stromal cells. In: Proceeding 9th meeting ceramics, cells and tissues
20.
go back to reference Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bone. J Biomed Mater Res 49:328–337PubMedCrossRef Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bone. J Biomed Mater Res 49:328–337PubMedCrossRef
21.
go back to reference Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursor from human bone marrow. Endocrinology 138(10):4456–4462PubMedCrossRef Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursor from human bone marrow. Endocrinology 138(10):4456–4462PubMedCrossRef
22.
go back to reference Fabbri M, Nataloni A, Celotti GC, Ravaglioli A (1995) Production and characterization of hydroxyapatite-based porous bodies for medical applications. Fourth Euro Ceramics 810:9–116 Fabbri M, Nataloni A, Celotti GC, Ravaglioli A (1995) Production and characterization of hydroxyapatite-based porous bodies for medical applications. Fourth Euro Ceramics 810:9–116
23.
go back to reference Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81(4):994–1004PubMed Ferraz MP, Mateus AY, Sousa JC, Monteiro FJ (2007) Nanohydroxyapatite microspheres delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts. J Biomed Mater Res A 81(4):994–1004PubMed
24.
go back to reference Carey LE, Xu HH, Simon CG Jr, Takagi S, Chow LC (2005) Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26(24):5002–5014PubMedCrossRef Carey LE, Xu HH, Simon CG Jr, Takagi S, Chow LC (2005) Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 26(24):5002–5014PubMedCrossRef
25.
go back to reference Staffa G, Servadei F, Nataloni A, Martinetti R (2003) Design of custom-made porous hydroxyapatite devices for the reconstruction of the skull: 6 years multicentric experience. J Appl Biomater Biomech 1:214 Staffa G, Servadei F, Nataloni A, Martinetti R (2003) Design of custom-made porous hydroxyapatite devices for the reconstruction of the skull: 6 years multicentric experience. J Appl Biomater Biomech 1:214
26.
go back to reference Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir 149:161–170CrossRef Staffa G, Nataloni A, Compagnone C, Servadei F (2007) Custom made cranioplasty prostheses in porous hydroxy-apatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochir 149:161–170CrossRef
27.
go back to reference Van Havenbergh T, Berghmans D, De Smedt K, Arcangeli E, Nataloni A (2007) One step neuronavigated cranial vault tumor resection and porous hydroxyapatite custom made prosthesis reconstruction: a case report. In: Proceeding 11th meeting ceramics, cells and tissues Van Havenbergh T, Berghmans D, De Smedt K, Arcangeli E, Nataloni A (2007) One step neuronavigated cranial vault tumor resection and porous hydroxyapatite custom made prosthesis reconstruction: a case report. In: Proceeding 11th meeting ceramics, cells and tissues
28.
go back to reference Marcacci M, Kon E, Quarto R, Kutepov SM, Mukhacev V, Lavroukov A, Cancedda R (2001) Repair of large bone defects by autologous human bone marrow stromal cells. Key Engineering Materials 192–195(105):3–1056 Marcacci M, Kon E, Quarto R, Kutepov SM, Mukhacev V, Lavroukov A, Cancedda R (2001) Repair of large bone defects by autologous human bone marrow stromal cells. Key Engineering Materials 192–195(105):3–1056
29.
go back to reference Marcacci M, Kon E, Mukhacev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955PubMedCrossRef Marcacci M, Kon E, Mukhacev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R (2007) Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 13(5):947–955PubMedCrossRef
30.
go back to reference Huber FX, McArthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, Berger I, Meeder PJ (2006) Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg 126(8):533–540PubMedCrossRef Huber FX, McArthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, Berger I, Meeder PJ (2006) Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg 126(8):533–540PubMedCrossRef
31.
go back to reference Helbert MU, Ulrich C (2000) Metaphyseal defect substitute: hydroxylapatite ceramic. Results of a 3 to 4 year follow up. Unfallchirurg 103(9):749–753CrossRef Helbert MU, Ulrich C (2000) Metaphyseal defect substitute: hydroxylapatite ceramic. Results of a 3 to 4 year follow up. Unfallchirurg 103(9):749–753CrossRef
32.
go back to reference Baer W, Schaller P, Carl HD (2002) Spongy hydroxyapatite in hand surgery—a five year follow-up. J Hand Surg (Br) 27(1):101–103 Baer W, Schaller P, Carl HD (2002) Spongy hydroxyapatite in hand surgery—a five year follow-up. J Hand Surg (Br) 27(1):101–103
33.
go back to reference Yamamoto T, Onga T, Marui T, Mizuno K (2000) Use of hydroxyapatite to fill cavities after excision of benign bone tumours. Clinical results. J Bone Joint Surg Br 82(8):1117–1120PubMedCrossRef Yamamoto T, Onga T, Marui T, Mizuno K (2000) Use of hydroxyapatite to fill cavities after excision of benign bone tumours. Clinical results. J Bone Joint Surg Br 82(8):1117–1120PubMedCrossRef
34.
go back to reference Fujishiro T, Nishikawa T, Niikura T, Takikawa S, Nishiyama T, Mizuno K, Yoshiya S, Kurosaka M (2005) Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones. Acta Orthop 76(4):550–554PubMedCrossRef Fujishiro T, Nishikawa T, Niikura T, Takikawa S, Nishiyama T, Mizuno K, Yoshiya S, Kurosaka M (2005) Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones. Acta Orthop 76(4):550–554PubMedCrossRef
35.
Metadata
Title
Major bone defect treatment with an osteoconductive bone substitute
Authors
Stefania Paderni
S. Terzi
L. Amendola
Publication date
01-09-2009
Publisher
Springer Milan
Published in
MUSCULOSKELETAL SURGERY / Issue 2/2009
Print ISSN: 2035-5106
Electronic ISSN: 2035-5114
DOI
https://doi.org/10.1007/s12306-009-0028-0

Other articles of this Issue 2/2009

MUSCULOSKELETAL SURGERY 2/2009 Go to the issue