Skip to main content
Top
Published in: Clinical Neuroradiology 1/2019

01-03-2019 | Original Article

Magnetic Resonance Neurography

Normal Values and Demographic Determinants of Nerve Caliber and T2 Relaxometry in 60 healthy individuals

Authors: Moritz Kronlage, Véronique Schwehr, Daniel Schwarz, Tim Godel, Sabine Heiland, Martin Bendszus, Philipp Bäumer

Published in: Clinical Neuroradiology | Issue 1/2019

Login to get access

Abstract

Purpose

To establish normal values and to identify demographic determinants of quantitative biomarkers in magnetic resonance neurography (MRN).

Methods

In this study 60 healthy individuals (5 men and 5 women of every decade between 20 and 80 years) were examined according to a standardized MRN protocol at 3 T, including multiecho T2 relaxometry. Nerve cross-sectional area (CSA), transverse relaxation time (T2), and proton spin density (PSD) were assessed for the sciatic, tibial, median, ulnar, and radial nerves. Correlation with demographic variables, such as height, weight, body mass index (BMI), and age was expressed by Pearson coefficients and t‑tests were used to compare MRN biomarkers between men and women with and without normalization to body weight and BMI by linear regression.

Results

The average nerve CSA correlated moderately with height (r = 0.28, p = 0.04), weight (r = 0.40, p = 0.002), and BMI (r = 0.35, p = 0.008), but not with age (r = 0.23, p = 0.09). While T2 did not correlate with demographic parameters, PSD was strongly inversely associated with BMI (r = −0.64, p < 0.001) and weight (r = −0.557, p < 0.001). Sex-dependent differences in imaging marker values were found for CSA but became negligible after normalization to body weight.

Conclusion

Quantitative biomarkers of MRN co-vary with demographic variables. As particularly important determinants, we identified body weight for nerve CSA and BMI for PSD. The presented normal values and demographic determinants may assist investigations into the potential of MRN biomarkers in further disease-specific studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol. 2014;27(4):370–9.CrossRef Pham M, Bäumer T, Bendszus M. Peripheral nerves and plexus: imaging by MR-neurography and high-resolution ultrasound. Curr Opin Neurol. 2014;27(4):370–9.CrossRef
2.
go back to reference Bäumer P, Mautner VF, Bäumer T, Schuhmann MU, Tatagiba M, Heiland S, Kaestel T, Bendszus M, Pham M. Accumulation of non-compressive fascicular lesions underlies NF2 polyneuropathy. J Neurol. 2013;260(1):38–46.CrossRef Bäumer P, Mautner VF, Bäumer T, Schuhmann MU, Tatagiba M, Heiland S, Kaestel T, Bendszus M, Pham M. Accumulation of non-compressive fascicular lesions underlies NF2 polyneuropathy. J Neurol. 2013;260(1):38–46.CrossRef
3.
go back to reference Shibuya K, Sugiyama A, Ito S, Misawa S, Sekiguchi Y, Mitsuma S, Iwai Y, Watanabe K, Shimada H, Kawaguchi H, Suhara T, Yokota H, Matsumoto H, Kuwabara S. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2015;77(2):333–7.CrossRef Shibuya K, Sugiyama A, Ito S, Misawa S, Sekiguchi Y, Mitsuma S, Iwai Y, Watanabe K, Shimada H, Kawaguchi H, Suhara T, Yokota H, Matsumoto H, Kuwabara S. Reconstruction magnetic resonance neurography in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2015;77(2):333–7.CrossRef
4.
go back to reference Chhabra A, Belzberg AJ, Rosson GD, Thawait GK, Chalian M, Farahani SJ, Shores JT, Deune G, Hashemi S, Thawait SK, Subhawong TK, Carrino JA. Impact of high resolution 3 tesla MR neurography (MRN) on diagnostic thinking and therapeutic patient management. Eur Radiol. 2016;26(5):1235–44.CrossRef Chhabra A, Belzberg AJ, Rosson GD, Thawait GK, Chalian M, Farahani SJ, Shores JT, Deune G, Hashemi S, Thawait SK, Subhawong TK, Carrino JA. Impact of high resolution 3 tesla MR neurography (MRN) on diagnostic thinking and therapeutic patient management. Eur Radiol. 2016;26(5):1235–44.CrossRef
5.
go back to reference Kollmer J, Bendszus M, Pham M. MR Neurography: diagnostic imaging in the PNS. Clin Neuroradiol. 2015;25(Suppl 2):283–9.CrossRef Kollmer J, Bendszus M, Pham M. MR Neurography: diagnostic imaging in the PNS. Clin Neuroradiol. 2015;25(Suppl 2):283–9.CrossRef
6.
go back to reference Kronlage M, Pitarokoili K, Schwarz D, Godel T, Heiland S, Yoon MS, Bendszus M, Bäumer P. Diffusion tensor imaging in chronic inflammatory demyelinating polyneuropathy: diagnostic accuracy and correlation with electrophysiology. Invest Radiol. 2017 Jun 1. [Epub ahead of print]CrossRefPubMed Kronlage M, Pitarokoili K, Schwarz D, Godel T, Heiland S, Yoon MS, Bendszus M, Bäumer P. Diffusion tensor imaging in chronic inflammatory demyelinating polyneuropathy: diagnostic accuracy and correlation with electrophysiology. Invest Radiol. 2017 Jun 1. [Epub ahead of print]CrossRefPubMed
7.
go back to reference Hobson-Webb LD, Padua L. Ultrasound of focal neuropathies. J Clin Neurophysiol. 2016;33(2):94–102.CrossRef Hobson-Webb LD, Padua L. Ultrasound of focal neuropathies. J Clin Neurophysiol. 2016;33(2):94–102.CrossRef
8.
go back to reference Pham M, Oikonomou D, Hornung B, Weiler M, Heiland S, Bäumer P, Kollmer J, Nawroth PP, Bendszus M. Magnetic resonance neurography detects diabetic neuropathy early and with proximal predominance. Ann Neurol. 2015;78(6):939–48.CrossRef Pham M, Oikonomou D, Hornung B, Weiler M, Heiland S, Bäumer P, Kollmer J, Nawroth PP, Bendszus M. Magnetic resonance neurography detects diabetic neuropathy early and with proximal predominance. Ann Neurol. 2015;78(6):939–48.CrossRef
9.
go back to reference Bäumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, Bendszus M, Weiler M. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology. 2014;273(1):185–93.CrossRef Bäumer P, Pham M, Ruetters M, Heiland S, Heckel A, Radbruch A, Bendszus M, Weiler M. Peripheral neuropathy: detection with diffusion-tensor imaging. Radiology. 2014;273(1):185–93.CrossRef
10.
go back to reference Kollmer J, Hund E, Hornung B, Hegenbart U, Schönland SO, Kimmich C, Kristen AV, Purrucker J, Röcken C, Heiland S, Bendszus M, Pham M. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain. 2015;138(Pt 3):549–62.CrossRef Kollmer J, Hund E, Hornung B, Hegenbart U, Schönland SO, Kimmich C, Kristen AV, Purrucker J, Röcken C, Heiland S, Bendszus M, Pham M. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain. 2015;138(Pt 3):549–62.CrossRef
11.
go back to reference MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31(6):673–7.CrossRef MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med. 1994;31(6):673–7.CrossRef
12.
go back to reference Tofts P. Proton density of tissue water. In: Tofts P, editor. Quantitative MRI of the brain: measuring changes caused by disease. Hoboken: John Wiley & Sons; 2003. pp. 83–108.CrossRef Tofts P. Proton density of tissue water. In: Tofts P, editor. Quantitative MRI of the brain: measuring changes caused by disease. Hoboken: John Wiley & Sons; 2003. pp. 83–108.CrossRef
13.
go back to reference Tofts PS, du Boulay EP. Towards quantitative measurements of relaxation times and other parameters in the brain. Neuroradiology. 1990;32(5):407–15.CrossRef Tofts PS, du Boulay EP. Towards quantitative measurements of relaxation times and other parameters in the brain. Neuroradiology. 1990;32(5):407–15.CrossRef
14.
go back to reference Cheng HL, Stikov N, Ghugre NR, Wright GA. Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging. 2012;36(4):805–24.CrossRef Cheng HL, Stikov N, Ghugre NR, Wright GA. Practical medical applications of quantitative MR relaxometry. J Magn Reson Imaging. 2012;36(4):805–24.CrossRef
15.
go back to reference Deoni SC. Quantitative relaxometry of the brain. Top Magn Reson Imaging. 2010;21(2):101–13.CrossRef Deoni SC. Quantitative relaxometry of the brain. Top Magn Reson Imaging. 2010;21(2):101–13.CrossRef
16.
go back to reference Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes. J Magn Reson Imaging. 2017;45(4):1125–34.CrossRef Vaeggemose M, Pham M, Ringgaard S, Tankisi H, Ejskjaer N, Heiland S, Poulsen PL, Andersen H. Diffusion tensor imaging MR neurography for the detection of polyneuropathy in type 1 diabetes. J Magn Reson Imaging. 2017;45(4):1125–34.CrossRef
17.
go back to reference Vaeggemose M, Vaeth S, Pham M, Ringgaard S, Jensen UB, Tankisi H, Ejskjaer N, Heiland S, Andersen H. Magnetic resonance neurography and diffusion tensor imaging of the peripheral nerves in patients with Charcot-Marie-Tooth Type 1A. Muscle Nerve. 2017 May 13. [Epub ahead of print]CrossRefPubMed Vaeggemose M, Vaeth S, Pham M, Ringgaard S, Jensen UB, Tankisi H, Ejskjaer N, Heiland S, Andersen H. Magnetic resonance neurography and diffusion tensor imaging of the peripheral nerves in patients with Charcot-Marie-Tooth Type 1A. Muscle Nerve. 2017 May 13. [Epub ahead of print]CrossRefPubMed
18.
go back to reference Kronlage M, Bäumer P, Pitarokoili K, Schwarz D, Schwehr V, Godel T, Heiland S, Gold R, Bendszus M, Yoon MS. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol. 2017;264(7):1434-43.CrossRef Kronlage M, Bäumer P, Pitarokoili K, Schwarz D, Schwehr V, Godel T, Heiland S, Gold R, Bendszus M, Yoon MS. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol. 2017;264(7):1434-43.CrossRef
19.
go back to reference Breitenseher JB, Kranz G, Hold A, Berzaczy D, Nemec SF, Sycha T, Weber M, Prayer D, Kasprian G. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study. Eur Radiol. 2015;25(7):1911–8.CrossRef Breitenseher JB, Kranz G, Hold A, Berzaczy D, Nemec SF, Sycha T, Weber M, Prayer D, Kasprian G. MR neurography of ulnar nerve entrapment at the cubital tunnel: a diffusion tensor imaging study. Eur Radiol. 2015;25(7):1911–8.CrossRef
20.
go back to reference Milford D, Rosbach N, Bendszus M, Heiland S. Mono-exponential fitting in T2-Relaxometry: relevance of offset and first echo. PLoS One. 2015;10(12):e0145255.CrossRef Milford D, Rosbach N, Bendszus M, Heiland S. Mono-exponential fitting in T2-Relaxometry: relevance of offset and first echo. PLoS One. 2015;10(12):e0145255.CrossRef
21.
go back to reference Cartwright MS, Passmore LV, Yoon JS, Brown ME, Caress JB, Walker FO. Cross-sectional area reference values for nerve ultrasonography. Muscle Nerve. 2008;37(5):566–71.CrossRef Cartwright MS, Passmore LV, Yoon JS, Brown ME, Caress JB, Walker FO. Cross-sectional area reference values for nerve ultrasonography. Muscle Nerve. 2008;37(5):566–71.CrossRef
22.
go back to reference Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic findings of the normal ulnar nerve in adults. Arch Phys Med Rehabil. 2007;88(3):394–6.CrossRef Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic findings of the normal ulnar nerve in adults. Arch Phys Med Rehabil. 2007;88(3):394–6.CrossRef
23.
go back to reference Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic reference values for assessing the normal median nerve in adults. J Neuroimaging. 2009;19(1):47–51.CrossRef Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic reference values for assessing the normal median nerve in adults. J Neuroimaging. 2009;19(1):47–51.CrossRef
24.
go back to reference Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS. Cross sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin Neurophysiol. 2013;124(9):1881–8.CrossRef Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS. Cross sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin Neurophysiol. 2013;124(9):1881–8.CrossRef
25.
go back to reference Seok HY, Jang JH, Won SJ, Yoon JS, Park KS, Kim BJ. Cross-sectional area reference values of nerves in the lower extremities using ultrasonography. Muscle Nerve. 2014;50(4):564–70.CrossRef Seok HY, Jang JH, Won SJ, Yoon JS, Park KS, Kim BJ. Cross-sectional area reference values of nerves in the lower extremities using ultrasonography. Muscle Nerve. 2014;50(4):564–70.CrossRef
26.
go back to reference Won SJ, Kim BJ, Park KS, Yoon JS, Choi H. Reference values for nerve ultrasonography in the upper extremity. Muscle Nerve. 2013;47(6):864–71.CrossRef Won SJ, Kim BJ, Park KS, Yoon JS, Choi H. Reference values for nerve ultrasonography in the upper extremity. Muscle Nerve. 2013;47(6):864–71.CrossRef
27.
go back to reference Saleh HA, El-fark MM, Abdel-Hamid GA. Anatomical variation of sciatic nerve division in the popliteal fossa and its implication in popliteal nerve blockade. Folia Morphol (Warsz). 2009;68(4):256–9. Saleh HA, El-fark MM, Abdel-Hamid GA. Anatomical variation of sciatic nerve division in the popliteal fossa and its implication in popliteal nerve blockade. Folia Morphol (Warsz). 2009;68(4):256–9.
28.
go back to reference Franco CD. Connective tissues associated with peripheral nerves. Reg Anesth Pain Med. 2012;37(4):363–5.CrossRefPubMed Franco CD. Connective tissues associated with peripheral nerves. Reg Anesth Pain Med. 2012;37(4):363–5.CrossRefPubMed
29.
go back to reference Fernández R, Carriel V, Lage S, Garate J, Díez-García J, Ochoa B, Castro B, Alaminos M, Fernández JA. Deciphering the lipid architecture of the rat sciatic nerve using imaging mass spectrometry. ACS Chem Neurosci. 2016;7(5):624–32.CrossRef Fernández R, Carriel V, Lage S, Garate J, Díez-García J, Ochoa B, Castro B, Alaminos M, Fernández JA. Deciphering the lipid architecture of the rat sciatic nerve using imaging mass spectrometry. ACS Chem Neurosci. 2016;7(5):624–32.CrossRef
30.
go back to reference Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta. 2015;1851(8):999–1005.CrossRef Schmitt S, Castelvetri LC, Simons M. Metabolism and functions of lipids in myelin. Biochim Biophys Acta. 2015;1851(8):999–1005.CrossRef
31.
go back to reference Qrimli M, Ebadi H, Breiner A, Siddiqui H, Alabdali M, Abraham A, Lovblom LE, Perkins BA, Bril V. Reference values for ultrasonograpy of peripheral nerves. Muscle Nerve. 2016;53(4):538–44.CrossRefPubMed Qrimli M, Ebadi H, Breiner A, Siddiqui H, Alabdali M, Abraham A, Lovblom LE, Perkins BA, Bril V. Reference values for ultrasonograpy of peripheral nerves. Muscle Nerve. 2016;53(4):538–44.CrossRefPubMed
Metadata
Title
Magnetic Resonance Neurography
Normal Values and Demographic Determinants of Nerve Caliber and T2 Relaxometry in 60 healthy individuals
Authors
Moritz Kronlage
Véronique Schwehr
Daniel Schwarz
Tim Godel
Sabine Heiland
Martin Bendszus
Philipp Bäumer
Publication date
01-03-2019
Publisher
Springer Berlin Heidelberg
Published in
Clinical Neuroradiology / Issue 1/2019
Print ISSN: 1869-1439
Electronic ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-017-0633-5

Other articles of this Issue 1/2019

Clinical Neuroradiology 1/2019 Go to the issue

Information

Information