Skip to main content
Top
Published in: Pediatric Nephrology 3/2021

01-03-2021 | Magnetic Resonance Imaging | Educational Review

The old becomes new: advances in imaging techniques to assess nephron mass in children

Authors: Marissa J. DeFreitas, Chryso P. Katsoufis, Juan C. Infante, Michael L. Granda, Carolyn L. Abitbol, Alessia Fornoni

Published in: Pediatric Nephrology | Issue 3/2021

Login to get access

Abstract

Renal imaging is widely used in the assessment of surrogate markers of nephron mass correlated to renal function. Autopsy studies have tested the validity of various imaging modalities in accurately estimating “true” nephron mass. However, in vivo assessment of nephron mass has been largely limited to kidney volume determination by ultrasonography (US) in pediatric populations. Practical limitations and risks create challenges in incorporating more precise 3D volumetric imaging, like magnetic resonance imaging (MRI), and computed tomography (CT) technologies, compared to US for routine kidney volume assessment in children. Additionally, accounting for structural anomalies such as hydronephrosis when estimating renal parenchymal area in congenital anomalies of the kidney and urinary tract (CAKUT) is important, as it correlates with chronic kidney disease (CKD) progression. 3D imaging using CT and MRI has been shown to be superior to US, which has traditionally relied on 2D measurements to estimate kidney volume using the ellipsoid calculation. Recent innovations using 3D and contrast-enhanced US (CEUS) provide improved accuracy with low risk. Indexing kidney volume to body surface area in children is an important standard that may allow early detection of CKD progression in high-risk populations. This review highlights current understanding of various imaging modalities in assessing nephron mass, discusses applications and limitations, and describes recent advances in the field of imaging and kidney disease. Although renal imaging has been a long-standing, essential tool in assessing kidney disease, innovation and new applications of established technologies provide important tools in the study and management of kidney disease in children.
Literature
2.
3.
go back to reference Eklof O, Ringertz H (1976) Kidney size in children. A method of assessment. Acta Radiol Diagn (Stockh) 17:617–625CrossRef Eklof O, Ringertz H (1976) Kidney size in children. A method of assessment. Acta Radiol Diagn (Stockh) 17:617–625CrossRef
4.
go back to reference Hodson CJ, Davies Z, Prescod A (1975) Renal parenchymal radiographic measurement in infants and children. Pediatr Radiol 24:16–19CrossRef Hodson CJ, Davies Z, Prescod A (1975) Renal parenchymal radiographic measurement in infants and children. Pediatr Radiol 24:16–19CrossRef
5.
go back to reference Chaesson I, Jacobsson B, Olsson T, Ringertz H (1981) Assessment of renal parenchymal thickness in normal children. Acta Radiol Diagn (Stockh) 22:305–314CrossRef Chaesson I, Jacobsson B, Olsson T, Ringertz H (1981) Assessment of renal parenchymal thickness in normal children. Acta Radiol Diagn (Stockh) 22:305–314CrossRef
6.
go back to reference Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. AJR Am J Roentgenol 145:611–616PubMedCrossRef Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. AJR Am J Roentgenol 145:611–616PubMedCrossRef
7.
go back to reference Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H (1985) Kidney size in childhood. Sonological growth charts for kidney length and volume. Pediatr Radiol 15:38–43PubMedCrossRef Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H (1985) Kidney size in childhood. Sonological growth charts for kidney length and volume. Pediatr Radiol 15:38–43PubMedCrossRef
8.
go back to reference Hederstrom E, Forsberg L (1985) Kidney size in children assessed by ultrasonography and urography. Acta Radiol Diagn (Stockh) 26:85–91CrossRef Hederstrom E, Forsberg L (1985) Kidney size in children assessed by ultrasonography and urography. Acta Radiol Diagn (Stockh) 26:85–91CrossRef
9.
go back to reference Cohen HL, Cooper J, Eisenberg P, Mandel FS, Gross BR, Goldman MA, Barzel E, Rawlinson KF (1991) Normal length of fetal kidneys: sonographic study in 397 obstetric patients. AJR Am J Roentgenol 157:545–548PubMedCrossRef Cohen HL, Cooper J, Eisenberg P, Mandel FS, Gross BR, Goldman MA, Barzel E, Rawlinson KF (1991) Normal length of fetal kidneys: sonographic study in 397 obstetric patients. AJR Am J Roentgenol 157:545–548PubMedCrossRef
10.
go back to reference Fernbach SK, Maizels M, Conway JJ (1993) Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol 23:478–480PubMedCrossRef Fernbach SK, Maizels M, Conway JJ (1993) Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol 23:478–480PubMedCrossRef
11.
go back to reference Gloor JM, Breckle RJ, Gehrking WC, Rosenquist RG, Mulholland TA, Bergstralh EJ, Ramin KD, Ogburn PL Jr (1997) Fetal renal growth evaluated by prenatal ultrasound examination. Mayo Clin Proc 72:124–129PubMedCrossRef Gloor JM, Breckle RJ, Gehrking WC, Rosenquist RG, Mulholland TA, Bergstralh EJ, Ramin KD, Ogburn PL Jr (1997) Fetal renal growth evaluated by prenatal ultrasound examination. Mayo Clin Proc 72:124–129PubMedCrossRef
12.
go back to reference Shin JS, Seo YS, Kim JH, Park KH (2007) Nomogram of fetal renal growth expressed in length and parenchymal area derived from ultrasound images. J Urol 178:2150–2154PubMedCrossRef Shin JS, Seo YS, Kim JH, Park KH (2007) Nomogram of fetal renal growth expressed in length and parenchymal area derived from ultrasound images. J Urol 178:2150–2154PubMedCrossRef
13.
go back to reference Kim HC, Yang DM, Lee SH, Cho YD (2008) Usefulness of renal volume measurements obtained by 3-dimensional sonographic transducer with matrix electronic arrays. J Ultrasound Med 27:1673–1681PubMedCrossRef Kim HC, Yang DM, Lee SH, Cho YD (2008) Usefulness of renal volume measurements obtained by 3-dimensional sonographic transducer with matrix electronic arrays. J Ultrasound Med 27:1673–1681PubMedCrossRef
14.
go back to reference Sargent MA, Gupta SC (1993) Sonographic measurement of relative renal volume in children: comparison with scintigraphic determination of relative renal function. AJR Am J Roentgenol 161:157–160PubMedCrossRef Sargent MA, Gupta SC (1993) Sonographic measurement of relative renal volume in children: comparison with scintigraphic determination of relative renal function. AJR Am J Roentgenol 161:157–160PubMedCrossRef
15.
go back to reference Puelles VG, Kanzaki G, Bertram JF (2016) Indirect estimation of nephron number: a new tool to predict outcomes in renal transplantation? Nephrol Dial Transplant 31:1378–1380PubMedCrossRef Puelles VG, Kanzaki G, Bertram JF (2016) Indirect estimation of nephron number: a new tool to predict outcomes in renal transplantation? Nephrol Dial Transplant 31:1378–1380PubMedCrossRef
16.
go back to reference Gupta S, Singh AH, Shabbir A, Hahn PF, Harris G, Sahani D (2012) Assessing renal parenchymal volume on unenhanced CT as a marker for predicting renal function in patients with chronic kidney disease. Acad Radiol 19:654–660PubMedCrossRef Gupta S, Singh AH, Shabbir A, Hahn PF, Harris G, Sahani D (2012) Assessing renal parenchymal volume on unenhanced CT as a marker for predicting renal function in patients with chronic kidney disease. Acad Radiol 19:654–660PubMedCrossRef
17.
go back to reference Mitsui Y, Sadahira T, Araki M, Wada K, Tanimoto R, Ariyoshi Y, Kobayashi Y, Watanabe M, Watanabe T, Nasu Y (2018) The assessment of renal cortex and parenchymal volume using automated CT volumetry for predicting renal function after donor nephrectomy. Clin Exp Nephrol 22:453–458PubMedCrossRef Mitsui Y, Sadahira T, Araki M, Wada K, Tanimoto R, Ariyoshi Y, Kobayashi Y, Watanabe M, Watanabe T, Nasu Y (2018) The assessment of renal cortex and parenchymal volume using automated CT volumetry for predicting renal function after donor nephrectomy. Clin Exp Nephrol 22:453–458PubMedCrossRef
18.
go back to reference Sasaki T, Tsuboi N, Okabayashi Y, Haruhara K, Kanzaki G, Koike K, Kobayashi A, Yamamoto I, Takahashi S, Ninomiya T, Shimizu A, Rule AD, Bertram JF, Yokoo T (2019) Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology. Sci Rep 9:14400PubMedPubMedCentralCrossRef Sasaki T, Tsuboi N, Okabayashi Y, Haruhara K, Kanzaki G, Koike K, Kobayashi A, Yamamoto I, Takahashi S, Ninomiya T, Shimizu A, Rule AD, Bertram JF, Yokoo T (2019) Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology. Sci Rep 9:14400PubMedPubMedCentralCrossRef
19.
go back to reference Puelles VG, Hoy WE, Hughson MD, Diouf B, Douglas-Denton RN, Bertram JF (2011) Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens 20:7–15PubMedCrossRef Puelles VG, Hoy WE, Hughson MD, Diouf B, Douglas-Denton RN, Bertram JF (2011) Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens 20:7–15PubMedCrossRef
20.
go back to reference Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533PubMedCrossRef Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533PubMedCrossRef
21.
go back to reference Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164:1026–1031PubMedCrossRef Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164:1026–1031PubMedCrossRef
22.
go back to reference Iyengar A, Nesargi S, George A, Sinha N, Selvam S, Luyckx VA (2016) Are low birth weight neonates at risk for suboptimal renal growth and function during infancy? BMC Nephrol 17:100PubMedPubMedCentralCrossRef Iyengar A, Nesargi S, George A, Sinha N, Selvam S, Luyckx VA (2016) Are low birth weight neonates at risk for suboptimal renal growth and function during infancy? BMC Nephrol 17:100PubMedPubMedCentralCrossRef
23.
go back to reference Geelhoed JJ, Taal HR, Steegers EA, Arends LR, Lequin M, Moll HA, Hofman A, van der Heijden AJ, Jaddoe VW (2010) Kidney growth curves in healthy children from the third trimester of pregnancy until the age of two years. The Generation R Study. Pediatr Nephrol 25:289–298PubMedPubMedCentralCrossRef Geelhoed JJ, Taal HR, Steegers EA, Arends LR, Lequin M, Moll HA, Hofman A, van der Heijden AJ, Jaddoe VW (2010) Kidney growth curves in healthy children from the third trimester of pregnancy until the age of two years. The Generation R Study. Pediatr Nephrol 25:289–298PubMedPubMedCentralCrossRef
24.
go back to reference Kooijman MN, Bakker H, van der Heijden AJ, Hofman A, Franco OH, Steegers EA, Taal HR, Jaddoe VW (2014) Childhood kidney outcomes in relation to fetal blood flow and kidney size. J Am Soc Nephrol 25:2616–2624PubMedPubMedCentralCrossRef Kooijman MN, Bakker H, van der Heijden AJ, Hofman A, Franco OH, Steegers EA, Taal HR, Jaddoe VW (2014) Childhood kidney outcomes in relation to fetal blood flow and kidney size. J Am Soc Nephrol 25:2616–2624PubMedPubMedCentralCrossRef
25.
go back to reference Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M (2019) Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr Nephrol 34:1765–1776PubMedPubMedCentralCrossRef Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M (2019) Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr Nephrol 34:1765–1776PubMedPubMedCentralCrossRef
26.
go back to reference Di Zazzo G, Stringini G, Matteucci MC, Muraca M, Malena S, Emma F (2011) Serum creatinine levels are significantly influenced by renal size in the normal pediatric population. Clin J Am Soc Nephrol 6:107–113PubMedPubMedCentralCrossRef Di Zazzo G, Stringini G, Matteucci MC, Muraca M, Malena S, Emma F (2011) Serum creatinine levels are significantly influenced by renal size in the normal pediatric population. Clin J Am Soc Nephrol 6:107–113PubMedPubMedCentralCrossRef
28.
29.
go back to reference Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, Lerman LO, Rule AD (2014) Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85:677–685PubMedCrossRef Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, Lerman LO, Rule AD (2014) Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85:677–685PubMedCrossRef
30.
go back to reference Tan JC, Paik J, Chertow GM, Grumet FC, Busque S, Lapasia J, Desai M (2011) Validity of surrogate measures for functional nephron mass. Transplantation 92:1335–1341PubMedPubMedCentralCrossRef Tan JC, Paik J, Chertow GM, Grumet FC, Busque S, Lapasia J, Desai M (2011) Validity of surrogate measures for functional nephron mass. Transplantation 92:1335–1341PubMedPubMedCentralCrossRef
31.
go back to reference Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201PubMedCrossRef Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201PubMedCrossRef
32.
go back to reference Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034PubMedPubMedCentralCrossRef Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034PubMedPubMedCentralCrossRef
33.
go back to reference Koike K, Ikezumi Y, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, Sasaki T, Ogura M, Saitoh A, Yokoo T (2017) Glomerular density and volume in renal biopsy specimens of children with proteinuria relative to preterm birth and gestational age. Clin J Am Soc Nephrol 12:585–590PubMedPubMedCentralCrossRef Koike K, Ikezumi Y, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, Sasaki T, Ogura M, Saitoh A, Yokoo T (2017) Glomerular density and volume in renal biopsy specimens of children with proteinuria relative to preterm birth and gestational age. Clin J Am Soc Nephrol 12:585–590PubMedPubMedCentralCrossRef
35.
go back to reference Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910PubMedCrossRef Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910PubMedCrossRef
36.
go back to reference Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265PubMedCrossRef Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265PubMedCrossRef
37.
go back to reference Granda ML, Amarapurkar P, Fornoni A (2018) Probing insulin sensitivity in diabetic kidney disease: is there a stronger role for functional imaging? Clin Sci (Lond) 132:1085–1095CrossRef Granda ML, Amarapurkar P, Fornoni A (2018) Probing insulin sensitivity in diabetic kidney disease: is there a stronger role for functional imaging? Clin Sci (Lond) 132:1085–1095CrossRef
39.
go back to reference Scholbach T, Weitzel D (2012) Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica (Cairo) 2012:949164 Scholbach T, Weitzel D (2012) Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica (Cairo) 2012:949164
40.
go back to reference Cheong B, Muthupillai R, Rubin MF, Flamm SD (2007) Normal values for renal length and volume as measured by magnetic resonance imaging. Clin J Am Soc Nephrol 2:38–45PubMedCrossRef Cheong B, Muthupillai R, Rubin MF, Flamm SD (2007) Normal values for renal length and volume as measured by magnetic resonance imaging. Clin J Am Soc Nephrol 2:38–45PubMedCrossRef
41.
go back to reference Griffiths GJ, Robinson KB, Cartwright GO, McLachlan MS (1976) Loss of renal tissue in the elderly. Br J Radiol 49:111–117PubMedCrossRef Griffiths GJ, Robinson KB, Cartwright GO, McLachlan MS (1976) Loss of renal tissue in the elderly. Br J Radiol 49:111–117PubMedCrossRef
42.
go back to reference Rasmussen SN, Haase L, Kjeldsen H, Hancke S (1978) Determination of renal volume by ultrasound scanning. J Clin Ultrasound 6:160–164PubMedCrossRef Rasmussen SN, Haase L, Kjeldsen H, Hancke S (1978) Determination of renal volume by ultrasound scanning. J Clin Ultrasound 6:160–164PubMedCrossRef
43.
go back to reference Thakur V, Watkins T, McCarthy K, Beidl T, Underwood N, Barnes K, Cook ME (1997) Is kidney length a good predictor of kidney volume? Am J Med Sci 313:85–89PubMed Thakur V, Watkins T, McCarthy K, Beidl T, Underwood N, Barnes K, Cook ME (1997) Is kidney length a good predictor of kidney volume? Am J Med Sci 313:85–89PubMed
44.
go back to reference D'Souza RC, Kotre CJ, Owen JP, Keir MJ, Ward MK, Wilkinson R (1995) Computed tomography evaluation of renal parenchymal volume in patients with chronic pyelonephritis and its relationship to glomerular filtration rate. Br J Radiol 68:130–133PubMedCrossRef D'Souza RC, Kotre CJ, Owen JP, Keir MJ, Ward MK, Wilkinson R (1995) Computed tomography evaluation of renal parenchymal volume in patients with chronic pyelonephritis and its relationship to glomerular filtration rate. Br J Radiol 68:130–133PubMedCrossRef
45.
go back to reference Widjaja E, Oxtoby JW, Hale TL, Jones PW, Harden PN, McCall IW (2004) Ultrasound measured renal length versus low dose CT volume in predicting single kidney glomerular filtration rate. Br J Radiol 77:759–764PubMedCrossRef Widjaja E, Oxtoby JW, Hale TL, Jones PW, Harden PN, McCall IW (2004) Ultrasound measured renal length versus low dose CT volume in predicting single kidney glomerular filtration rate. Br J Radiol 77:759–764PubMedCrossRef
46.
go back to reference Bakker J, Olree M, Kaatee R, de Lange EE, Beek FJ (1998) In vitro measurement of kidney size: comparison of ultrasonography and MRI. Ultrasound Med Biol 24:683–688PubMedCrossRef Bakker J, Olree M, Kaatee R, de Lange EE, Beek FJ (1998) In vitro measurement of kidney size: comparison of ultrasonography and MRI. Ultrasound Med Biol 24:683–688PubMedCrossRef
47.
go back to reference Bakker J, Olree M, Kaatee R, de Lange EE, Moons KG, Beutler JJ, Beek FJ (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628PubMedCrossRef Bakker J, Olree M, Kaatee R, de Lange EE, Moons KG, Beutler JJ, Beek FJ (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628PubMedCrossRef
48.
go back to reference Sasaki T, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, Koike K, Kobayashi A, Yamamoto I, Ogura M, Hoy WE, Bertram JF, Shimizu A, Yokoo T (2019) Biopsy-based estimation of total nephron number in Japanese living kidney donors. Clin Exp Nephrol 23:629–637PubMedCrossRef Sasaki T, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, Koike K, Kobayashi A, Yamamoto I, Ogura M, Hoy WE, Bertram JF, Shimizu A, Yokoo T (2019) Biopsy-based estimation of total nephron number in Japanese living kidney donors. Clin Exp Nephrol 23:629–637PubMedCrossRef
49.
go back to reference Breysem L, De Rechter S, De Keyzer F, Smet MH, Bammens B, Van Dyck M, Hofmans M, Oyen R, Levtchenko E, Mekahli D (2018) 3DUS as an alternative to MRI for measuring renal volume in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 33:827–835PubMedCrossRef Breysem L, De Rechter S, De Keyzer F, Smet MH, Bammens B, Van Dyck M, Hofmans M, Oyen R, Levtchenko E, Mekahli D (2018) 3DUS as an alternative to MRI for measuring renal volume in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 33:827–835PubMedCrossRef
50.
go back to reference Mekahli D, Ong ACM, Pape L, Titieni A, Torra R, Winyard PJD, Schaefer F (2019) Imaging of kidney cysts and cystic kidney diseases in children: an international working group consensus statement. Radiology 290:769–782PubMedCrossRef Mekahli D, Ong ACM, Pape L, Titieni A, Torra R, Winyard PJD, Schaefer F (2019) Imaging of kidney cysts and cystic kidney diseases in children: an international working group consensus statement. Radiology 290:769–782PubMedCrossRef
51.
go back to reference Partik BL, Stadler A, Schamp S, Koller A, Voracek M, Heinz G, Helbich TH (2002) 3D versus 2D ultrasound: accuracy of volume measurement in human cadaver kidneys. Investig Radiol 37:489–495CrossRef Partik BL, Stadler A, Schamp S, Koller A, Voracek M, Heinz G, Helbich TH (2002) 3D versus 2D ultrasound: accuracy of volume measurement in human cadaver kidneys. Investig Radiol 37:489–495CrossRef
52.
go back to reference Kent AL, Jyoti R, Robertson C, Gonsalves L, Meskell S, Shadbolt B, Falk MC (2010) Are renal volumes measured by magnetic resonance imaging and three-dimensional ultrasound in the term neonate comparable? Pediatr Nephrol 25:913–918PubMedCrossRef Kent AL, Jyoti R, Robertson C, Gonsalves L, Meskell S, Shadbolt B, Falk MC (2010) Are renal volumes measured by magnetic resonance imaging and three-dimensional ultrasound in the term neonate comparable? Pediatr Nephrol 25:913–918PubMedCrossRef
53.
go back to reference Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, Houghton F, Goodyer P (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921PubMedCrossRef Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, Houghton F, Goodyer P (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921PubMedCrossRef
54.
go back to reference Wang H, Pulido JE, Song Y, Furth SL, Tu C, Zhang C, Li C, Tasian GE (2014) Segmentation of renal parenchymal area from ultrasound images using level set evolution. Conf Proc IEEE Eng Med Biol Soc 2014:4703–4706 Wang H, Pulido JE, Song Y, Furth SL, Tu C, Zhang C, Li C, Tasian GE (2014) Segmentation of renal parenchymal area from ultrasound images using level set evolution. Conf Proc IEEE Eng Med Biol Soc 2014:4703–4706
55.
go back to reference Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE (2014) Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol 9:499–505PubMedCrossRef Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE (2014) Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol 9:499–505PubMedCrossRef
56.
go back to reference Moscardi PRM, Katsoufis CP, Jahromi M, Blachman-Braun R, DeFreitas MJ, Kozakowski K, Castellan M, Labbie A, Gosalbez R, Alam A (2018) Prenatal renal parenchymal area as a predictor of early end-stage renal disease in children with vesicoamniotic shunting for lower urinary tract obstruction. J Pediatr Urol 14:320.e321–320.e326CrossRef Moscardi PRM, Katsoufis CP, Jahromi M, Blachman-Braun R, DeFreitas MJ, Kozakowski K, Castellan M, Labbie A, Gosalbez R, Alam A (2018) Prenatal renal parenchymal area as a predictor of early end-stage renal disease in children with vesicoamniotic shunting for lower urinary tract obstruction. J Pediatr Urol 14:320.e321–320.e326CrossRef
57.
go back to reference Ntoulia A, Anupindi SA, Darge K, Back SJ (2018) Applications of contrast-enhanced ultrasound in the pediatric abdomen. Abdom Radiol (NY) 43:948–959CrossRef Ntoulia A, Anupindi SA, Darge K, Back SJ (2018) Applications of contrast-enhanced ultrasound in the pediatric abdomen. Abdom Radiol (NY) 43:948–959CrossRef
58.
go back to reference Bertolotto M, Bucci S, Valentino M, Curro F, Sachs C, Cova MA (2018) Contrast-enhanced ultrasound for characterizing renal masses. Eur J Radiol 105:41–48PubMedCrossRef Bertolotto M, Bucci S, Valentino M, Curro F, Sachs C, Cova MA (2018) Contrast-enhanced ultrasound for characterizing renal masses. Eur J Radiol 105:41–48PubMedCrossRef
59.
go back to reference Prevost R, Mory B, Cuingnet R, Correas JM, Cohen LD, Ardon R (2014) Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images. In: El-Baz A., Saba L., Suri J. (eds) Abdomen and Thoracic Imaging. Springer: Boston Prevost R, Mory B, Cuingnet R, Correas JM, Cohen LD, Ardon R (2014) Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images. In: El-Baz A., Saba L., Suri J. (eds) Abdomen and Thoracic Imaging. Springer: Boston
60.
go back to reference Lu L, Sedor JR, Gulani V, Schelling JR, O'Brien A, Flask CA, MacRae Dell K (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482PubMedPubMedCentralCrossRef Lu L, Sedor JR, Gulani V, Schelling JR, O'Brien A, Flask CA, MacRae Dell K (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482PubMedPubMedCentralCrossRef
61.
go back to reference Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, Benito A, Fernandez-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46:1810–1817PubMedCrossRef Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, Benito A, Fernandez-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46:1810–1817PubMedCrossRef
62.
go back to reference Ritt M, Janka R, Schneider MP, Martirosian P, Hornegger J, Bautz W, Uder M, Schmieder RE (2010) Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant 25:1126–1133PubMedCrossRef Ritt M, Janka R, Schneider MP, Martirosian P, Hornegger J, Bautz W, Uder M, Schmieder RE (2010) Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant 25:1126–1133PubMedCrossRef
63.
go back to reference Poirier JY, Moisan A, Le Cloirec J, Siemen C, Yaouanq J, Edan G, Herry JY (1990) Renal scintigraphy in insulin-dependent diabetes mellitus: early glomerular and urologic dysfunction. J Diabet Complicat 4:113–118CrossRef Poirier JY, Moisan A, Le Cloirec J, Siemen C, Yaouanq J, Edan G, Herry JY (1990) Renal scintigraphy in insulin-dependent diabetes mellitus: early glomerular and urologic dysfunction. J Diabet Complicat 4:113–118CrossRef
64.
go back to reference Radermacher J, Ellis S, Haller H (2002) Renal resistance index and progression of renal disease. Hypertension 39:699–703PubMedCrossRef Radermacher J, Ellis S, Haller H (2002) Renal resistance index and progression of renal disease. Hypertension 39:699–703PubMedCrossRef
65.
go back to reference Kim JH, Lee SM, Son YK, Kim SE, An WS (2017) Resistive index as a predictor of renal progression in patients with moderate renal dysfunction regardless of angiotensin converting enzyme inhibitor or angiotensin receptor antagonist medication. Kidney Res Clin Pract 36:58–67PubMedPubMedCentralCrossRef Kim JH, Lee SM, Son YK, Kim SE, An WS (2017) Resistive index as a predictor of renal progression in patients with moderate renal dysfunction regardless of angiotensin converting enzyme inhibitor or angiotensin receptor antagonist medication. Kidney Res Clin Pract 36:58–67PubMedPubMedCentralCrossRef
66.
go back to reference Meola M, Samoni S, Petrucci I (2016) Imaging in chronic kidney disease. Contrib Nephrol 188:69–80PubMedCrossRef Meola M, Samoni S, Petrucci I (2016) Imaging in chronic kidney disease. Contrib Nephrol 188:69–80PubMedCrossRef
67.
go back to reference Yaprak M, Cakir O, Turan MN, Dayanan R, Akin S, Degirmen E, Yildirim M, Turgut F (2017) Role of ultrasonographic chronic kidney disease score in the assessment of chronic kidney disease. Int Urol Nephrol 49:123–131PubMedCrossRef Yaprak M, Cakir O, Turan MN, Dayanan R, Akin S, Degirmen E, Yildirim M, Turgut F (2017) Role of ultrasonographic chronic kidney disease score in the assessment of chronic kidney disease. Int Urol Nephrol 49:123–131PubMedCrossRef
68.
go back to reference Bennett KM, Beeman SC, Baldelomar EJ, Zhang M, Wu T, Hann BD, Bertram JF, Charlton JR (2016) Use of cationized ferritin nanoparticles to measure renal glomerular microstructure with MRI. Methods Mol Biol 1397:67–79PubMedCrossRef Bennett KM, Beeman SC, Baldelomar EJ, Zhang M, Wu T, Hann BD, Bertram JF, Charlton JR (2016) Use of cationized ferritin nanoparticles to measure renal glomerular microstructure with MRI. Methods Mol Biol 1397:67–79PubMedCrossRef
69.
go back to reference Beeman SC, Georges JF, Bennett KM (2013) Toxicity, biodistribution, and ex vivo MRI detection of intravenously injected cationized ferritin. Magn Reson Med 69:853–861PubMedCrossRef Beeman SC, Georges JF, Bennett KM (2013) Toxicity, biodistribution, and ex vivo MRI detection of intravenously injected cationized ferritin. Magn Reson Med 69:853–861PubMedCrossRef
70.
go back to reference Charlton JR, Pearl VM, Denotti AR, Lee JB, Swaminathan S, Scindia YM, Charlton NP, Baldelomar EJ, Beeman SC, Bennett KM (2016) Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents. Nanomedicine 12:1735–1745PubMedCrossRef Charlton JR, Pearl VM, Denotti AR, Lee JB, Swaminathan S, Scindia YM, Charlton NP, Baldelomar EJ, Beeman SC, Bennett KM (2016) Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents. Nanomedicine 12:1735–1745PubMedCrossRef
71.
go back to reference Bennett KM, Zhou H, Sumner JP, Dodd SJ, Bouraoud N, Doi K, Star RA, Koretsky AP (2008) MRI of the basement membrane using charged nanoparticles as contrast agents. Magn Reson Med 60:564–574PubMedPubMedCentralCrossRef Bennett KM, Zhou H, Sumner JP, Dodd SJ, Bouraoud N, Doi K, Star RA, Koretsky AP (2008) MRI of the basement membrane using charged nanoparticles as contrast agents. Magn Reson Med 60:564–574PubMedPubMedCentralCrossRef
72.
go back to reference Beeman SC, Cullen-McEwen LA, Puelles VG, Zhang M, Wu T, Baldelomar EJ, Dowling J, Charlton JR, Forbes MS, Ng A, Wu QZ, Armitage JA, Egan GF, Bertram JF, Bennett KM (2014) MRI-based glomerular morphology and pathology in whole human kidneys. Am J Physiol Renal Physiol 306:F1381–F1390PubMedPubMedCentralCrossRef Beeman SC, Cullen-McEwen LA, Puelles VG, Zhang M, Wu T, Baldelomar EJ, Dowling J, Charlton JR, Forbes MS, Ng A, Wu QZ, Armitage JA, Egan GF, Bertram JF, Bennett KM (2014) MRI-based glomerular morphology and pathology in whole human kidneys. Am J Physiol Renal Physiol 306:F1381–F1390PubMedPubMedCentralCrossRef
73.
go back to reference Baldelomar EJ, Charlton JR, Beeman SC, Bennett KM (2018) Measuring rat kidney glomerular number and size in vivo with MRI. Am J Physiol Renal Physiol 314:F399–F406PubMedCrossRef Baldelomar EJ, Charlton JR, Beeman SC, Bennett KM (2018) Measuring rat kidney glomerular number and size in vivo with MRI. Am J Physiol Renal Physiol 314:F399–F406PubMedCrossRef
74.
go back to reference Qian C, Yu X, Chen DY, Dodd S, Bouraoud N, Pothayee N, Chen Y, Beeman S, Bennett K, Murphy-Boesch J, Koretsky A (2013) Wireless amplified nuclear MR detector (WAND) for high-spatial-resolution MR imaging of internal organs: preclinical demonstration in a rodent model. Radiology 268:228–236PubMedPubMedCentralCrossRef Qian C, Yu X, Chen DY, Dodd S, Bouraoud N, Pothayee N, Chen Y, Beeman S, Bennett K, Murphy-Boesch J, Koretsky A (2013) Wireless amplified nuclear MR detector (WAND) for high-spatial-resolution MR imaging of internal organs: preclinical demonstration in a rodent model. Radiology 268:228–236PubMedPubMedCentralCrossRef
75.
go back to reference Qian C, Yu X, Pothayee N, Dodd S, Bouraoud N, Star R, Bennett K, Koretsky A (2014) Live nephron imaging by MRI. Am J Physiol Renal Physiol 307:F1162–F1168PubMedPubMedCentralCrossRef Qian C, Yu X, Pothayee N, Dodd S, Bouraoud N, Star R, Bennett K, Koretsky A (2014) Live nephron imaging by MRI. Am J Physiol Renal Physiol 307:F1162–F1168PubMedPubMedCentralCrossRef
76.
go back to reference Timilsina R, Qian C (2019) A novel expandable catheter wireless amplified NMR detector for MR sensitivity accessing the kidney in rodent model. IEEE Trans Biomed Circuits Syst 13:444–453PubMedPubMedCentralCrossRef Timilsina R, Qian C (2019) A novel expandable catheter wireless amplified NMR detector for MR sensitivity accessing the kidney in rodent model. IEEE Trans Biomed Circuits Syst 13:444–453PubMedPubMedCentralCrossRef
77.
go back to reference Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370PubMedPubMedCentral Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370PubMedPubMedCentral
78.
go back to reference van Raaij S, van Swelm R, Bouman K, Cliteur M, van den Heuvel MC, Pertijs J, Patel D, Bass P, van Goor H, Unwin R, Srai SK, Swinkels D (2018) Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep 8:9353PubMedPubMedCentralCrossRef van Raaij S, van Swelm R, Bouman K, Cliteur M, van den Heuvel MC, Pertijs J, Patel D, Bass P, van Goor H, Unwin R, Srai SK, Swinkels D (2018) Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep 8:9353PubMedPubMedCentralCrossRef
Metadata
Title
The old becomes new: advances in imaging techniques to assess nephron mass in children
Authors
Marissa J. DeFreitas
Chryso P. Katsoufis
Juan C. Infante
Michael L. Granda
Carolyn L. Abitbol
Alessia Fornoni
Publication date
01-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 3/2021
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-020-04477-8

Other articles of this Issue 3/2021

Pediatric Nephrology 3/2021 Go to the issue