Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 5/2019

01-10-2019 | Magnetic Resonance Imaging | Research Article

Studying the cardiovascular system of a marine crustacean with magnetic resonance imaging at 9.4 T

Authors: Bastian Maus, Hans-Otto Pörtner, Christian Bock

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 5/2019

Login to get access

Abstract

Objectives

An approach is presented for high-field MRI studies of the cardiovascular system (CVS) of a marine crustacean, the edible crab Cancer pagurus, submerged in highly conductive seawater.

Materials and methods

Structure and function of the CVS were investigated at 9.4 T. Cardiac motion was studied using self-gated CINE MRI. Imaging protocols and radio-frequency coil arrangements were tested for anatomical imaging. Haemolymph flow was quantified using phase-contrast angiography. Signal-to-noise-ratios and flow velocities in afferent and efferent branchial veins were compared with Student’s t test (n = 5).

Results

Seawater induced signal losses were dependent on imaging protocols and RF coil setup. Internal cardiac structures could be visualized with high spatial resolution within 8 min using a gradient-echo technique. Variations in haemolymph flow in different vessels could be determined over time. Maximum flow was similar within individual vessels and corresponded to literature values from Doppler measurements. Heart contractions were more pronounced in lateral and dorso-ventral directions than in the anterior–posterior direction.

Discussion

Choosing adequate imaging protocols in combination with a specific RF coil arrangement allows to monitor various parts of the crustacean CVS with exceptionally high spatial resolution despite the adverse effects of seawater at 9.4 T.
Appendix
Available only for authorised users
Literature
1.
go back to reference Benveniste H, Blackband S (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420CrossRef Benveniste H, Blackband S (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420CrossRef
3.
go back to reference Uǧurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281CrossRef Uǧurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281CrossRef
4.
go back to reference Vallée JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M (2004) Current status of cardiac MRI in small animals. Magn Reson Mater Phy 17:149–156CrossRef Vallée JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M (2004) Current status of cardiac MRI in small animals. Magn Reson Mater Phy 17:149–156CrossRef
5.
go back to reference Tsui BMW, Kraitchman DL (2009) Recent advances in small-animal cardiovascular imaging. J Nucl Med 50:667–670CrossRef Tsui BMW, Kraitchman DL (2009) Recent advances in small-animal cardiovascular imaging. J Nucl Med 50:667–670CrossRef
6.
go back to reference Herberholz J (2004) Anatomy of a live invertebrate revealed by manganese-enhanced magnetic resonance imaging. J Exp Biol 207:4543–4550CrossRef Herberholz J (2004) Anatomy of a live invertebrate revealed by manganese-enhanced magnetic resonance imaging. J Exp Biol 207:4543–4550CrossRef
7.
go back to reference Brinkley CK, Kolodny NH, Kohler SJ, Sandeman DC, Beltz BS (2005) Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. J Neurosci Methods 146:124–132CrossRef Brinkley CK, Kolodny NH, Kohler SJ, Sandeman DC, Beltz BS (2005) Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. J Neurosci Methods 146:124–132CrossRef
8.
go back to reference Kabli S, Alia A, Spaink HP, Verbeek FJ, De Groot HJM (2006) Magnetic resonance microscopy of the adult zebrafish. Zebrafish 3:431–439CrossRef Kabli S, Alia A, Spaink HP, Verbeek FJ, De Groot HJM (2006) Magnetic resonance microscopy of the adult zebrafish. Zebrafish 3:431–439CrossRef
9.
go back to reference Bock C, Wermter FC, Mintenbeck K (2017) MRI and MRS on preserved samples as a tool in fish ecology. Magn Reson Imaging 38:39–46CrossRef Bock C, Wermter FC, Mintenbeck K (2017) MRI and MRS on preserved samples as a tool in fish ecology. Magn Reson Imaging 38:39–46CrossRef
10.
go back to reference Köhnk S, Baudewig J, Brandis D, Boretius S (2017) What’s in this crab? MRI providing high-resolution three-dimensional insights into recent finds and historical collections of Brachyura. Zoology 121:1–9CrossRef Köhnk S, Baudewig J, Brandis D, Boretius S (2017) What’s in this crab? MRI providing high-resolution three-dimensional insights into recent finds and historical collections of Brachyura. Zoology 121:1–9CrossRef
11.
go back to reference Ziegler A, Kunth M, Mueller S, Bock C, Pohmann R, Schröder L, Faber C, Giribet G (2011) Application of magnetic resonance imaging in zoology. Zoomorphology 130:227–254CrossRef Ziegler A, Kunth M, Mueller S, Bock C, Pohmann R, Schröder L, Faber C, Giribet G (2011) Application of magnetic resonance imaging in zoology. Zoomorphology 130:227–254CrossRef
12.
go back to reference Van Der Linden A, Verhoye M, Pörtner H-O, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phy 17:236–248CrossRef Van Der Linden A, Verhoye M, Pörtner H-O, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phy 17:236–248CrossRef
14.
go back to reference Melzner F, Bock C, Pörtner H-O (2007) Coordination between ventilatory pressure oscillations and venous return in the cephalopod Sepia officinalis under control conditions, spontaneous exercise and recovery. J Comp Physiol B Biochem Syst Environ Physiol 177:1–17CrossRef Melzner F, Bock C, Pörtner H-O (2007) Coordination between ventilatory pressure oscillations and venous return in the cephalopod Sepia officinalis under control conditions, spontaneous exercise and recovery. J Comp Physiol B Biochem Syst Environ Physiol 177:1–17CrossRef
15.
go back to reference Lannig G, Cherkasov AS, Pörtner H-O, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). AJP Regul Integr Comp Physiol 294:R1338–R1346CrossRef Lannig G, Cherkasov AS, Pörtner H-O, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). AJP Regul Integr Comp Physiol 294:R1338–R1346CrossRef
16.
go back to reference Sukhotin A, Fokina N, Ruokolainen T, Bock C, Pörtner H-O, Lannig G (2017) Does the membrane pacemaker theory of metabolism explain the size dependence of metabolic rate in marine mussels? J Exp Biol 220:1423–1434CrossRef Sukhotin A, Fokina N, Ruokolainen T, Bock C, Pörtner H-O, Lannig G (2017) Does the membrane pacemaker theory of metabolism explain the size dependence of metabolic rate in marine mussels? J Exp Biol 220:1423–1434CrossRef
17.
go back to reference Koth J, Maguire ML, McClymont D, Diffley L, Thornton VL, Beech J, Patient RK, Riley PR, Schneider JE (2017) High-resolution magnetic resonance imaging of the regenerating adult zebrafish heart. Sci Rep 7:1–12CrossRef Koth J, Maguire ML, McClymont D, Diffley L, Thornton VL, Beech J, Patient RK, Riley PR, Schneider JE (2017) High-resolution magnetic resonance imaging of the regenerating adult zebrafish heart. Sci Rep 7:1–12CrossRef
18.
go back to reference Seo E, Ohishi K, Maruyama T, Imaizumi-Ohashi Y, Murakami M, Seo Y (2014) Testing the constant-volume hypothesis by magnetic resonance imaging of Mytilus galloprovincialis heart. J Exp Biol 217:964–973CrossRef Seo E, Ohishi K, Maruyama T, Imaizumi-Ohashi Y, Murakami M, Seo Y (2014) Testing the constant-volume hypothesis by magnetic resonance imaging of Mytilus galloprovincialis heart. J Exp Biol 217:964–973CrossRef
19.
go back to reference Seo E, Sazi T, Togawa M, Nagata O, Murakami M, Kojima S, Seo Y (2016) A portable infrared photoplethysmograph: heartbeat of Mytilus galloprovincialis analyzed by MRI and application to Bathymodiolus septemdierum. Biol Open 5:1752–1757CrossRef Seo E, Sazi T, Togawa M, Nagata O, Murakami M, Kojima S, Seo Y (2016) A portable infrared photoplethysmograph: heartbeat of Mytilus galloprovincialis analyzed by MRI and application to Bathymodiolus septemdierum. Biol Open 5:1752–1757CrossRef
20.
go back to reference Bock C, Frederich M, Wittig R-M, Pörtner H-O (2001) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imaging 19:1113–1124CrossRef Bock C, Frederich M, Wittig R-M, Pörtner H-O (2001) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imaging 19:1113–1124CrossRef
21.
go back to reference Maus B, Bock C, Pörtner H-O (2018) Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification. J Comp Physiol B Biochem Syst Environ Physiol 188:749–764CrossRef Maus B, Bock C, Pörtner H-O (2018) Water bicarbonate modulates the response of the shore crab Carcinus maenas to ocean acidification. J Comp Physiol B Biochem Syst Environ Physiol 188:749–764CrossRef
22.
go back to reference McMahon BR, Wilkens JL (1977) Periodic respiratory and circulatory performance in the red rock crab Cancer productus. J Exp Zool 202:363–374CrossRef McMahon BR, Wilkens JL (1977) Periodic respiratory and circulatory performance in the red rock crab Cancer productus. J Exp Zool 202:363–374CrossRef
23.
go back to reference Bock C, Dogan F, Pörtner H-O (2012) Coping with a changing ocean: real-time cardiac MRI on an animal model with a natural cardiovascular disorder. Proc Int Soc Magn Reson Med Sci Meet Exhib 20:5021 Bock C, Dogan F, Pörtner H-O (2012) Coping with a changing ocean: real-time cardiac MRI on an animal model with a natural cardiovascular disorder. Proc Int Soc Magn Reson Med Sci Meet Exhib 20:5021
24.
go back to reference McMahon BR, Burnett LE (1990) The crustacean open circulatory system: a reexamination. Physiol Zool 63:35–71CrossRef McMahon BR, Burnett LE (1990) The crustacean open circulatory system: a reexamination. Physiol Zool 63:35–71CrossRef
25.
go back to reference Frederich M, DeWachter B, Sartoris F-J, Pörtner H-O (2000) Cold tolerance and the regulation of cardiac performance and hemolymph distribution in maja squinado (Crustacea: Decapoda). Physiol Biochem Zool 73:406–415CrossRef Frederich M, DeWachter B, Sartoris F-J, Pörtner H-O (2000) Cold tolerance and the regulation of cardiac performance and hemolymph distribution in maja squinado (Crustacea: Decapoda). Physiol Biochem Zool 73:406–415CrossRef
26.
go back to reference Frederich M, Pörtner H-O (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp Physiol 279:R1531–R1538CrossRef Frederich M, Pörtner H-O (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp Physiol 279:R1531–R1538CrossRef
27.
go back to reference Giomi F, Pörtner H-O (2013) A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Front Physiol 4:1–12CrossRef Giomi F, Pörtner H-O (2013) A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Front Physiol 4:1–12CrossRef
28.
go back to reference De Wachter B, McMahon BR (1996) Temperature effects on heart performance and regional hemolymph flow in the crab Cancer magister. Comp Biochem Physiol A Physiol 114:27–33CrossRef De Wachter B, McMahon BR (1996) Temperature effects on heart performance and regional hemolymph flow in the crab Cancer magister. Comp Biochem Physiol A Physiol 114:27–33CrossRef
29.
go back to reference Bradford SM, Taylor AC (1982) The respiration of Cancer pagurus under normoxic and hypoxic conditions. J Exp Biol 97:273–288 Bradford SM, Taylor AC (1982) The respiration of Cancer pagurus under normoxic and hypoxic conditions. J Exp Biol 97:273–288
30.
go back to reference Walther K, Sartoris F-J, Bock C, Pörtner H-O (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215CrossRef Walther K, Sartoris F-J, Bock C, Pörtner H-O (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215CrossRef
31.
go back to reference Taylor AC (1977) The respiratory responses of Carcinus maenas (L.) to changes in environmental salinity. J Exp Mar Bio Ecol 29:197–210CrossRef Taylor AC (1977) The respiratory responses of Carcinus maenas (L.) to changes in environmental salinity. J Exp Mar Bio Ecol 29:197–210CrossRef
32.
go back to reference McGaw IJ, Reiber CL (2002) Cardiovascular system of the blue crab Callinectes sapidus. J Morphol 251:1–21CrossRef McGaw IJ, Reiber CL (2002) Cardiovascular system of the blue crab Callinectes sapidus. J Morphol 251:1–21CrossRef
33.
go back to reference Airriess CN, McMahon BR, McGaw IJ, Bourne GB (1994) Application and in situ calibration of a pulsed-doppler flowmeter for blood flow measurement in crustaceans. J Mar Biol Assoc UK 74:455–458CrossRef Airriess CN, McMahon BR, McGaw IJ, Bourne GB (1994) Application and in situ calibration of a pulsed-doppler flowmeter for blood flow measurement in crustaceans. J Mar Biol Assoc UK 74:455–458CrossRef
34.
go back to reference Reiber CL, McMahon BR, Burggren WW (1997) Cardiovascular functions in two macruran decapod crustaceans (Procambarus clarkii and Homarus americanus) during periods of inactivity, tail flexion and cardiorespiratory pauses. J Exp Biol 200:1103–1113PubMed Reiber CL, McMahon BR, Burggren WW (1997) Cardiovascular functions in two macruran decapod crustaceans (Procambarus clarkii and Homarus americanus) during periods of inactivity, tail flexion and cardiorespiratory pauses. J Exp Biol 200:1103–1113PubMed
35.
go back to reference Bock C, Sartoris F-J, Wittig R-M, Pörtner H-O (2001) Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. Polar Biol 24:869–874CrossRef Bock C, Sartoris F-J, Wittig R-M, Pörtner H-O (2001) Temperature-dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in-vivo NMR study. Polar Biol 24:869–874CrossRef
36.
go back to reference Pope JM, Yao S (1993) Quantitative NMR imaging of flow. Concepts Magn Reson 5:281–302CrossRef Pope JM, Yao S (1993) Quantitative NMR imaging of flow. Concepts Magn Reson 5:281–302CrossRef
37.
go back to reference Roberts L, Cheesman S, Elliott M, Breithaupt T (2016) Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. J Exp Mar Bio Ecol 474:185–194CrossRef Roberts L, Cheesman S, Elliott M, Breithaupt T (2016) Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. J Exp Mar Bio Ecol 474:185–194CrossRef
38.
go back to reference Florey E, Kriebel ME (1974) The effects of temperature, anoxia and sensory stimulation on the heart rate of unrestrained crabs. Comp Biochem Physiol A 48:285–300CrossRef Florey E, Kriebel ME (1974) The effects of temperature, anoxia and sensory stimulation on the heart rate of unrestrained crabs. Comp Biochem Physiol A 48:285–300CrossRef
39.
go back to reference McDonald DG, McMahon BR, Wood CM (1977) Patterns of heart and scaphognathite activity in the crab Cancer magister. J Exp Zool 202:33–43CrossRef McDonald DG, McMahon BR, Wood CM (1977) Patterns of heart and scaphognathite activity in the crab Cancer magister. J Exp Zool 202:33–43CrossRef
40.
go back to reference McMahon BR, McDonald DG, Wood CM (1979) Ventilation, oxygen uptake and haemolymph oxygen transport, following enforced exhausting activity in the Dungeness crab Cancer magister. J Exp Biol 80:271–285 McMahon BR, McDonald DG, Wood CM (1979) Ventilation, oxygen uptake and haemolymph oxygen transport, following enforced exhausting activity in the Dungeness crab Cancer magister. J Exp Biol 80:271–285
41.
go back to reference Wilkens JL, Wilkens LA, McMahon BR (1974) Central control of cardiac and scaphognathite pacemakers in the crab, Cancer magister. J Comp Physiol 90:89–104CrossRef Wilkens JL, Wilkens LA, McMahon BR (1974) Central control of cardiac and scaphognathite pacemakers in the crab, Cancer magister. J Comp Physiol 90:89–104CrossRef
42.
go back to reference Brouwer M, Engel DW, Bonaventura J, Johnson GA (1992) In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties. J Exp Zool 263:32–40CrossRef Brouwer M, Engel DW, Bonaventura J, Johnson GA (1992) In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties. J Exp Zool 263:32–40CrossRef
43.
go back to reference Libove JM, Singer JR (1980) Resolution and signal-to-noise relationships in NMR imaging in the human body. J Phys E Sci Instrum 13:38–44CrossRef Libove JM, Singer JR (1980) Resolution and signal-to-noise relationships in NMR imaging in the human body. J Phys E Sci Instrum 13:38–44CrossRef
44.
go back to reference Beck BL, Jenkins K, Caserta J, Padgett K, Fitzsimmons J, Blackband SJ (2004) Observation of significant signal voids in images of large biological samples at 11.1 T. Magn Reson Med 51:1103–1107CrossRef Beck BL, Jenkins K, Caserta J, Padgett K, Fitzsimmons J, Blackband SJ (2004) Observation of significant signal voids in images of large biological samples at 11.1 T. Magn Reson Med 51:1103–1107CrossRef
45.
go back to reference Hartung MP, Grist TM, François CJ (2011) Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson 13:1–11CrossRef Hartung MP, Grist TM, François CJ (2011) Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson 13:1–11CrossRef
46.
go back to reference Wheaton AJ, Miyazaki M (2012) Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 36:286–304CrossRef Wheaton AJ, Miyazaki M (2012) Non-contrast enhanced MR angiography: physical principles. J Magn Reson Imaging 36:286–304CrossRef
47.
go back to reference McGaw IJ, Airriess CN, McMahon BR (1994) Patterns of haemolymph-flow variation in decapod crustaceans. Mar Biol 121:53–60CrossRef McGaw IJ, Airriess CN, McMahon BR (1994) Patterns of haemolymph-flow variation in decapod crustaceans. Mar Biol 121:53–60CrossRef
48.
go back to reference Bock C, Sartoris F-J, Pörtner H-O (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imaging 20:165–172CrossRef Bock C, Sartoris F-J, Pörtner H-O (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imaging 20:165–172CrossRef
49.
go back to reference Airriess CN, McMahon BR (1994) Cardiovascular adaptations enhance tolerance of environmental hypoxia in the crab cancer magister. J Exp Biol 190:23–41PubMed Airriess CN, McMahon BR (1994) Cardiovascular adaptations enhance tolerance of environmental hypoxia in the crab cancer magister. J Exp Biol 190:23–41PubMed
50.
go back to reference Taylor EW (1982) Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J Exp Biol 100:289–319 Taylor EW (1982) Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J Exp Biol 100:289–319
51.
go back to reference Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRef Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426CrossRef
52.
go back to reference Chuang ML, Hibberd MG, Salton CJ, Beaudin RA, Riley MF, Parker RA, Douglas PS, Manning WJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35:477–484CrossRef Chuang ML, Hibberd MG, Salton CJ, Beaudin RA, Riley MF, Parker RA, Douglas PS, Manning WJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging. J Am Coll Cardiol 35:477–484CrossRef
53.
go back to reference Walsh TF, Hundley WG (2007) Assessment of ventricular function with cardiovascular magnetic resonance. Cardiol Clin 25:15–33CrossRef Walsh TF, Hundley WG (2007) Assessment of ventricular function with cardiovascular magnetic resonance. Cardiol Clin 25:15–33CrossRef
Metadata
Title
Studying the cardiovascular system of a marine crustacean with magnetic resonance imaging at 9.4 T
Authors
Bastian Maus
Hans-Otto Pörtner
Christian Bock
Publication date
01-10-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 5/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00752-4

Other articles of this Issue 5/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 5/2019 Go to the issue