Skip to main content
Top
Published in: Insights into Imaging 1/2020

Open Access 01-12-2020 | Magnetic Resonance Imaging | Educational Review

Sports-related lower limb muscle injuries: pattern recognition approach and MRI review

Authors: Jaime Isern-Kebschull, Sandra Mechó, Ricard Pruna, Ara Kassarjian, Xavier Valle, Xavier Yanguas, Xavier Alomar, Javier Martinez, Jaume Pomés, Gil Rodas

Published in: Insights into Imaging | Issue 1/2020

Login to get access

Abstract

Muscle injuries of the lower limbs are currently the most common sport-related injuries, the impact of which is particularly significant in elite athletes. MRI is the imaging modality of choice in assessing acute muscle injuries and radiologists play a key role in the current scenario of multidisciplinary health care teams involved in the care of elite athletes with muscle injuries. Despite the frequency and clinical relevance of muscle injuries, there is still a lack of uniformity in the description, diagnosis, and classification of lesions. The characteristics of the connective tissues (distribution and thickness) differ among muscles, being of high variability in the lower limb. This variability is of great clinical importance in determining the prognosis of muscle injuries. Recently, three classification systems, the Munich consensus statement, the British Athletics Muscle Injury classification, and the FC Barcelona-Aspetar-Duke classification, have been proposed to assess the severity of muscle injuries. A protocolized approach to the evaluation of MRI findings is essential to accurately assess the severity of acute lesions and to evaluate the progression of reparative changes. Certain MRI findings which are seen during recovery may suggest muscle overload or adaptative changes and appear to be clinically useful for sport physicians and physiotherapists.
Literature
5.
go back to reference Valle X, Alentorn-Geli E, Tol JL et al (2017) Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application. Sports Med 47:1241–1253CrossRef Valle X, Alentorn-Geli E, Tol JL et al (2017) Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application. Sports Med 47:1241–1253CrossRef
10.
go back to reference Flores DV, Gomez CM, Estrada-Castrillon M, Smitaman E, Pathria MN (2018) MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. RadioGraphics 38:124–148CrossRef Flores DV, Gomez CM, Estrada-Castrillon M, Smitaman E, Pathria MN (2018) MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. RadioGraphics 38:124–148CrossRef
21.
go back to reference Omar IM, Zoga AC, Kavanagh EC et al (2008) Athletic pubalgia and "sports hernia": optimal MR imaging technique and findings. Radiographics 28:1415–1438CrossRef Omar IM, Zoga AC, Kavanagh EC et al (2008) Athletic pubalgia and "sports hernia": optimal MR imaging technique and findings. Radiographics 28:1415–1438CrossRef
23.
go back to reference Siriwanarangsun PStatum S, Biswas R, Bae WC, Chung CB (2016) Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant imaging med Surg 6:731-743. Doi: 10.21037/qims.2016.12.06. Siriwanarangsun PStatum S, Biswas R, Bae WC, Chung CB (2016) Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant imaging med Surg 6:731-743. Doi: 10.21037/qims.2016.12.06.
25.
go back to reference Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764 Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764
27.
go back to reference Connell DA, Schneider-Kolsky ME, Hoving JL et al (2004) Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol 183:975–984CrossRef Connell DA, Schneider-Kolsky ME, Hoving JL et al (2004) Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol 183:975–984CrossRef
29.
go back to reference Gibbs NJ, Cross TM, Cameron M, Houang MT (2004) The accuracy of MRI in predicting recovery and recurrence of acute grade one hamstring muscle strains within the same season in Australian rules football players. J Sci Med Sport 7:248–258 Gibbs NJ, Cross TM, Cameron M, Houang MT (2004) The accuracy of MRI in predicting recovery and recurrence of acute grade one hamstring muscle strains within the same season in Australian rules football players. J Sci Med Sport 7:248–258
30.
go back to reference Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA (2006) A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med 34:1008–1015 Schneider-Kolsky ME, Hoving JL, Warren P, Connell DA (2006) A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med 34:1008–1015
31.
go back to reference Slavotinek JP, Verrall GM, Fon GT (2002) Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol 179:1621–1628CrossRef Slavotinek JP, Verrall GM, Fon GT (2002) Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol 179:1621–1628CrossRef
36.
go back to reference Cohen SB, Towers JD, Zoga A et al (2011) Hamstring injuries in professional football players: magnetic resonance imaging correlation with return to play. Sports Health 3:423–430CrossRef Cohen SB, Towers JD, Zoga A et al (2011) Hamstring injuries in professional football players: magnetic resonance imaging correlation with return to play. Sports Health 3:423–430CrossRef
37.
go back to reference Reurink G, Almusa E, Goudswaard GJ et al (2015) No association between fibrosis on magnetic resonance imaging at return to play and hamstring reinjury risk. Am J Sports Med 43:1228–1234CrossRef Reurink G, Almusa E, Goudswaard GJ et al (2015) No association between fibrosis on magnetic resonance imaging at return to play and hamstring reinjury risk. Am J Sports Med 43:1228–1234CrossRef
38.
go back to reference Cruz J, Mascarenhas V (2018) Adult thigh muscle injuries-from diagnosis to treatment: what the radiologist should know. Skeletal Radiol 47:1087–1098CrossRef Cruz J, Mascarenhas V (2018) Adult thigh muscle injuries-from diagnosis to treatment: what the radiologist should know. Skeletal Radiol 47:1087–1098CrossRef
39.
go back to reference Wangensteen A, Guermazi A, Tol JL et al (2018) New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol 28:3532–3541CrossRef Wangensteen A, Guermazi A, Tol JL et al (2018) New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol 28:3532–3541CrossRef
40.
go back to reference Dimmick S, Linklaster J (2017) Imaging of acute hamstring muscle strain injuries. Semin Musculokeletal Radiol 21:415–432CrossRef Dimmick S, Linklaster J (2017) Imaging of acute hamstring muscle strain injuries. Semin Musculokeletal Radiol 21:415–432CrossRef
Metadata
Title
Sports-related lower limb muscle injuries: pattern recognition approach and MRI review
Authors
Jaime Isern-Kebschull
Sandra Mechó
Ricard Pruna
Ara Kassarjian
Xavier Valle
Xavier Yanguas
Xavier Alomar
Javier Martinez
Jaume Pomés
Gil Rodas
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 1/2020
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-020-00912-4

Other articles of this Issue 1/2020

Insights into Imaging 1/2020 Go to the issue