Skip to main content
Top
Published in: Brain Structure and Function 9/2019

01-12-2019 | Magnetic Resonance Imaging | Original Article

Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation

Authors: Simona Monaco, Giulia Malfatti, Alessandro Zendron, Elisa Pellencin, Luca Turella

Published in: Brain Structure and Function | Issue 9/2019

Login to get access

Abstract

Predictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in the absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available and vice versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.
Appendix
Available only for authorised users
Literature
go back to reference Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330PubMed Amedi A, Malach R, Hendler T, Peled S, Zohary E (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330PubMed
go back to reference Ariani G, Wurm MF, Lingnau A (2015) Decoding internally and externally driven movement plans. J Neurosci 35:14160–14171PubMedPubMedCentral Ariani G, Wurm MF, Lingnau A (2015) Decoding internally and externally driven movement plans. J Neurosci 35:14160–14171PubMedPubMedCentral
go back to reference Ariani G, Oosterhof NN, Lingnau A (2018) Time-resolved decoding of planned delayed and immediate prehension movements. Cortex 99:330–345PubMed Ariani G, Oosterhof NN, Lingnau A (2018) Time-resolved decoding of planned delayed and immediate prehension movements. Cortex 99:330–345PubMed
go back to reference Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190PubMedPubMedCentral Baizer JS, Ungerleider LG, Desimone R (1991) Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J Neurosci 11:168–190PubMedPubMedCentral
go back to reference Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188 Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188
go back to reference Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259PubMed Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259PubMed
go back to reference Binkofski F, Kunesch E, Classen J, Seitz RJ, Freund HJ (2001) Tactile apraxia: unimodal apractic disorder of tactile object exploration associated with parietal lobe lesions. Brain 124:132–144PubMed Binkofski F, Kunesch E, Classen J, Seitz RJ, Freund HJ (2001) Tactile apraxia: unimodal apractic disorder of tactile object exploration associated with parietal lobe lesions. Brain 124:132–144PubMed
go back to reference Blakemore SJ, Wolpert D, Frith C (2000) Why can’t you tickle yourself? NeuroReport 11:R11–R16PubMed Blakemore SJ, Wolpert D, Frith C (2000) Why can’t you tickle yourself? NeuroReport 11:R11–R16PubMed
go back to reference Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18:1094–1111PubMed Borra E, Belmalih A, Calzavara R, Gerbella M, Murata A, Rozzi S, Luppino G (2008) Cortical connections of the macaque anterior intraparietal (AIP) area. Cereb Cortex 18:1094–1111PubMed
go back to reference Bracci S, Ietswaart M, Peelen MV, Cavina-Pratesi C (2010) Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. J Neurophysiol 103(6):3389–3397PubMedPubMedCentral Bracci S, Ietswaart M, Peelen MV, Cavina-Pratesi C (2010) Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. J Neurophysiol 103(6):3389–3397PubMedPubMedCentral
go back to reference Bracci S, Cavina-Pratesi C, Ietswaart M, Caramazza A, Peelen MVMV (2012) Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. J Neurophysiol 107:1443–1456PubMed Bracci S, Cavina-Pratesi C, Ietswaart M, Caramazza A, Peelen MVMV (2012) Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. J Neurophysiol 107:1443–1456PubMed
go back to reference Breveglieri R, Kutz DF, Fattori P, Gamberini M, Galletti C (2002) Somatosensory cells in the parieto-occipital area V6A of the macaque. NeuroReport 13:2113–2116PubMed Breveglieri R, Kutz DF, Fattori P, Gamberini M, Galletti C (2002) Somatosensory cells in the parieto-occipital area V6A of the macaque. NeuroReport 13:2113–2116PubMed
go back to reference Breveglieri R, Bosco A, Galletti C, Passarelli L, Fattori P (2016) Neural activity in the medial parietal area V6A while grasping with or without visual feedback. Sci Rep 6:28893PubMedPubMedCentral Breveglieri R, Bosco A, Galletti C, Passarelli L, Fattori P (2016) Neural activity in the medial parietal area V6A while grasping with or without visual feedback. Sci Rep 6:28893PubMedPubMedCentral
go back to reference Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606PubMed Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606PubMed
go back to reference Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neurosci 14:157–170 Castiello U, Begliomini C (2008) The cortical control of visually guided grasping. Neurosci 14:157–170
go back to reference Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107PubMed Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107PubMed
go back to reference Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TDTDTDTD, Quinlan DJDJDJDJ, Goodale MAMA, Culham JCJCJC (2010) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323PubMedPubMedCentral Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TDTDTDTD, Quinlan DJDJDJDJ, Goodale MAMA, Culham JCJCJC (2010) Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. J Neurosci 30:10306–10323PubMedPubMedCentral
go back to reference Cichy RM, Heinzle J, Haynes J-D (2012) Imagery and perception share cortical representations of content and location. Cereb Cortex 22:372–380PubMed Cichy RM, Heinzle J, Haynes J-D (2012) Imagery and perception share cortical representations of content and location. Cereb Cortex 22:372–380PubMed
go back to reference Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189PubMed Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189PubMed
go back to reference Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47:1553–1562PubMed Cohen NR, Cross ES, Tunik E, Grafton ST, Culham JC (2009) Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47:1553–1562PubMed
go back to reference Cole J (1995) Pride and a daily marathon. MIT Press, Cambridge Cole J (1995) Pride and a daily marathon. MIT Press, Cambridge
go back to reference Cole J (2016) Losing touch. Oxford University Press, Oxford Cole J (2016) Losing touch. Oxford University Press, Oxford
go back to reference Dijkerman HC, de Haan EHF (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–201 (discussion 201–239) PubMed Dijkerman HC, de Haan EHF (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–201 (discussion 201–239) PubMed
go back to reference Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science (80–) 293:2470–2473 Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual processing of the human body. Science (80–) 293:2470–2473
go back to reference Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C (2015) Vision for prehension in the medial parietal cortex. Cereb Cortex 27:bhv302 Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C (2015) Vision for prehension in the medial parietal cortex. Cereb Cortex 27:bhv302
go back to reference Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D, Franz VH, Rösler F (2011) Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 54:2401–2411PubMed Fiehler K, Bannert MM, Bischoff M, Blecker C, Stark R, Vaitl D, Franz VH, Rösler F (2011) Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 54:2401–2411PubMed
go back to reference Fourkas A, Ionta S (2006) Influence of imagined posture and imagery modality on corticospinal excitability. Behav Brain Res 168:190–196PubMed Fourkas A, Ionta S (2006) Influence of imagined posture and imagery modality on corticospinal excitability. Behav Brain Res 168:190–196PubMed
go back to reference Freud E, Macdonald SN, Chen J, Quinlan DJ, Goodale MA, Culham JC (2018) Getting a grip on reality: grasping movements directed to real objects and images rely on dissociable neural representations. Cortex 98:34–48PubMed Freud E, Macdonald SN, Chen J, Quinlan DJ, Goodale MA, Culham JC (2018) Getting a grip on reality: grasping movements directed to real objects and images rely on dissociable neural representations. Cortex 98:34–48PubMed
go back to reference Gallivan JP, Cavina-Pratesi C, Culham JC (2009) Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. J Neurosci 29:4381–4391PubMedPubMedCentral Gallivan JP, Cavina-Pratesi C, Culham JC (2009) Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. J Neurosci 29:4381–4391PubMedPubMedCentral
go back to reference Gallivan JP, Mclean DA, Valyear KF, Pettypiece CE, Culham JC (2011) Decoding action intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 31:9599–9610PubMedPubMedCentral Gallivan JP, Mclean DA, Valyear KF, Pettypiece CE, Culham JC (2011) Decoding action intentions from preparatory brain activity in human parieto-frontal networks. J Neurosci 31:9599–9610PubMedPubMedCentral
go back to reference Gallivan JP, Chapman CS, Mclean DA, Flanagan JR, Culham JC (2013) Activity patterns in the category-selective occipitotemporal cortex predict upcoming motor actions. Eur J Neurosci 38:2408–2424PubMed Gallivan JP, Chapman CS, Mclean DA, Flanagan JR, Culham JC (2013) Activity patterns in the category-selective occipitotemporal cortex predict upcoming motor actions. Eur J Neurosci 38:2408–2424PubMed
go back to reference Goodale MA (2014) How (and why) the visual control of action differs from visual perception. Proc R Soc B Biol Sci 281:20140337 Goodale MA (2014) How (and why) the visual control of action differs from visual perception. Proc R Soc B Biol Sci 281:20140337
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed
go back to reference Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14:203–211PubMed Goodale MA, Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Curr Opin Neurobiol 14:203–211PubMed
go back to reference Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMed Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203PubMed
go back to reference Grol MJ, Majdandzic J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H, Verstraten FA, Toni I (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887PubMedPubMedCentral Grol MJ, Majdandzic J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H, Verstraten FA, Toni I (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887PubMedPubMedCentral
go back to reference Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734PubMed Hari R, Karhu J, Hämäläinen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734PubMed
go back to reference Hermsdörfer J, Elias Z, Cole JD, Quaney BM, Nowak DA (2008) Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair 22:374–384PubMed Hermsdörfer J, Elias Z, Cole JD, Quaney BM, Nowak DA (2008) Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair 22:374–384PubMed
go back to reference Hutchison RM, Gallivan JP (2018) Functional coupling between frontoparietal and occipitotemporal pathways during action and perception. Cortex 98:8–27PubMed Hutchison RM, Gallivan JP (2018) Functional coupling between frontoparietal and occipitotemporal pathways during action and perception. Cortex 98:8–27PubMed
go back to reference James TW, Culham JC, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475PubMed James TW, Culham JC, Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475PubMed
go back to reference Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11:224–231PubMed Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11:224–231PubMed
go back to reference Kosslyn S, Thompson W (1995) Topographical representations of mental images in primary visual cortex. Nature 378:496–498PubMed Kosslyn S, Thompson W (1995) Topographical representations of mental images in primary visual cortex. Nature 378:496–498PubMed
go back to reference Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science (80–) 293:1506–1509 Kourtzi Z, Kanwisher N (2001) Representation of perceived object shape by the human lateral occipital complex. Science (80–) 293:1506–1509
go back to reference Kourtzi Z, Bülthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci 5:17–18PubMed Kourtzi Z, Bülthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci 5:17–18PubMed
go back to reference Kriegeskorte N, Lindquist MA, Nichols TE, Poldrack RA, Vul E (2010) Everything you never wanted to know about circular analysis, but were afraid to ask. J Cereb Blood Flow Metab 30:1551–1557PubMedPubMedCentral Kriegeskorte N, Lindquist MA, Nichols TE, Poldrack RA, Vul E (2010) Everything you never wanted to know about circular analysis, but were afraid to ask. J Cereb Blood Flow Metab 30:1551–1557PubMedPubMedCentral
go back to reference Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:391–409PubMed Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:391–409PubMed
go back to reference Lacquaniti F, Perani D, Guigon E, Bettinardi V, Carrozzo M, Grassi F, Rossetti Y, Fazio F (1997) Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5:129–146PubMed Lacquaniti F, Perani D, Guigon E, Bettinardi V, Carrozzo M, Grassi F, Rossetti Y, Fazio F (1997) Visuomotor transformations for reaching to memorized targets: a PET study. Neuroimage 5:129–146PubMed
go back to reference Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187PubMed Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187PubMed
go back to reference Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 17:559–578PubMed Luppino G, Rozzi S, Calzavara R, Matelli M (2003) Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey. Eur J Neurosci 17:559–578PubMed
go back to reference Marangon M, Kubiak A, Króliczak G (2016) Haptically guided grasping. fMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution. Front Hum Neurosci 9:691PubMedPubMedCentral Marangon M, Kubiak A, Króliczak G (2016) Haptically guided grasping. fMRI shows right-hemisphere parietal stimulus encoding, and bilateral dorso-ventral parietal gradients of object- and action-related processing during grasp execution. Front Hum Neurosci 9:691PubMedPubMedCentral
go back to reference Mercier C, Aballea A, Vargas CD, Paillard J, Sirigu A (2008) Vision without proprioception modulates cortico-spinal excitability during hand motor imagery. Cereb Cortex 18:272–277PubMed Mercier C, Aballea A, Vargas CD, Paillard J, Sirigu A (2008) Vision without proprioception modulates cortico-spinal excitability during hand motor imagery. Cereb Cortex 18:272–277PubMed
go back to reference Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279PubMed Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279PubMed
go back to reference Milner AD, Goodale MA (1995) The visual brain in action, the visual brain in action. Oxford University Press, Oxford Milner AD, Goodale MA (1995) The visual brain in action, the visual brain in action. Oxford University Press, Oxford
go back to reference Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci 92:8135–8139PubMed Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA, Ledden PJ, Brady TJ, Rosen BR, Tootell RB (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci 92:8135–8139PubMed
go back to reference Monaco S, Cavina-Pratesi C, Sedda A, Fattori P, Galletti C, Culhaml JC, Culham JC (2011) Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. J Neurophysiol 106:2248–2263PubMed Monaco S, Cavina-Pratesi C, Sedda A, Fattori P, Galletti C, Culhaml JC, Culham JC (2011) Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. J Neurophysiol 106:2248–2263PubMed
go back to reference Monaco S, Gallivan JP, Figley TD, Singhal A, Culham JC (2017) Recruitment of foveal retinotopic cortex during haptic exploration of shapes and actions in the dark. J Neurosci 37(48):11572–11591PubMedPubMedCentral Monaco S, Gallivan JP, Figley TD, Singhal A, Culham JC (2017) Recruitment of foveal retinotopic cortex during haptic exploration of shapes and actions in the dark. J Neurosci 37(48):11572–11591PubMedPubMedCentral
go back to reference Mountcastle VB, Lynch JC, Georgopoulos AP, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMed Mountcastle VB, Lynch JC, Georgopoulos AP, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMed
go back to reference Murata A, Gallese V, Kaseda M, Sakata H (1996) Parietal neurons related to memory-guided hand manipulation. J Neurophysiol 75:2180–2186PubMed Murata A, Gallese V, Kaseda M, Sakata H (1996) Parietal neurons related to memory-guided hand manipulation. J Neurophysiol 75:2180–2186PubMed
go back to reference Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMed Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601PubMed
go back to reference Oosterhof NN, Tipper SP, Downing PE (2012) Visuo-motor imagery of specific manual actions: a multi-variate pattern analysis fMRI study. Neuroimage 63:262–271PubMed Oosterhof NN, Tipper SP, Downing PE (2012) Visuo-motor imagery of specific manual actions: a multi-variate pattern analysis fMRI study. Neuroimage 63:262–271PubMed
go back to reference Passarelli L, Rosa MGP, Gamberini M, Bakola S, Burman KJ, Fattori P, Galletti C (2011) Cortical connections of area V6Av in the macaque: a visual-input node to the eye/hand coordination system. J Neurosci 31:1790–1801PubMedPubMedCentral Passarelli L, Rosa MGP, Gamberini M, Bakola S, Burman KJ, Fattori P, Galletti C (2011) Cortical connections of area V6Av in the macaque: a visual-input node to the eye/hand coordination system. J Neurosci 31:1790–1801PubMedPubMedCentral
go back to reference Peelen MV, Wiggett AJ, Downing PE (2006) Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron 49:815–822PubMed Peelen MV, Wiggett AJ, Downing PE (2006) Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron 49:815–822PubMed
go back to reference Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013) The human homologue of macaque area V6A. Neuroimage 82:517–530PubMed Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013) The human homologue of macaque area V6A. Neuroimage 82:517–530PubMed
go back to reference Raos V, Umilta MA, Gallese V, Fogassi L (2004) Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. J Neurophysiol 92:1990–2002PubMed Raos V, Umilta MA, Gallese V, Fogassi L (2004) Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. J Neurophysiol 92:1990–2002PubMed
go back to reference Raos V, Umiltá M-A, Murata A, Fogassi L, Gallese V (2005) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95:709–729PubMed Raos V, Umiltá M-A, Murata A, Fogassi L, Gallese V (2005) Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. J Neurophysiol 95:709–729PubMed
go back to reference Reed CL, Klatzky RL, Halgren E (2005) What vs. where in touch: an fMRI study. Neuroimage 25:718–726PubMed Reed CL, Klatzky RL, Halgren E (2005) What vs. where in touch: an fMRI study. Neuroimage 25:718–726PubMed
go back to reference Rossit S, McAdam T, Mclean DA, Goodale MA, Culham JC (2013) FMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex 49:2525–2541PubMed Rossit S, McAdam T, Mclean DA, Goodale MA, Culham JC (2013) FMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex 49:2525–2541PubMed
go back to reference Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102PubMed Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102PubMed
go back to reference Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438PubMed Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438PubMed
go back to reference Seitz RJ, Roland PE, Bohm C, Greitz T, Stone-Elander S (1991) Somatosensory discrimination of shape: tactile exploration and cerebral activation. Eur J Neurosci 3:481–492PubMed Seitz RJ, Roland PE, Bohm C, Greitz T, Stone-Elander S (1991) Somatosensory discrimination of shape: tactile exploration and cerebral activation. Eur J Neurosci 3:481–492PubMed
go back to reference Singhal A, Monaco S, Kaufman LD, Culham JC, Jacobs C (2013) Human fMRI reveals that delayed action re-recruits visual perception. PLoS One 8:e73629PubMedPubMedCentral Singhal A, Monaco S, Kaufman LD, Culham JC, Jacobs C (2013) Human fMRI reveals that delayed action re-recruits visual perception. PLoS One 8:e73629PubMedPubMedCentral
go back to reference Styrkowiec PP, Nowik AM, Króliczak G (2019) The neural underpinnings of haptically guided functional grasping of tools: an fMRI study. Neuroimage 194:149–162PubMed Styrkowiec PP, Nowik AM, Króliczak G (2019) The neural underpinnings of haptically guided functional grasping of tools: an fMRI study. Neuroimage 194:149–162PubMed
go back to reference Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36PubMed Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36PubMed
go back to reference Talairach J, Tournoux P (1988) Co-planar stereotaxic Atlas of the human brain. Theime, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic Atlas of the human brain. Theime, New York
go back to reference Tal Z, Geva R, Amedi A (2016) The origins of metamodality in visual object area LO: bodily topographical biases and increased functional connectivity to S1. Neuroimage 127:363–375PubMedPubMedCentral Tal Z, Geva R, Amedi A (2016) The origins of metamodality in visual object area LO: bodily topographical biases and increased functional connectivity to S1. Neuroimage 127:363–375PubMedPubMedCentral
go back to reference Tomassini V, Jbabdi S, Klein JC, Behrens TEJ, Pozzilli C, Matthews PM, Rushworth MFS, Johansen-Berg H (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J Neurosci 27:10259–10269PubMedPubMedCentral Tomassini V, Jbabdi S, Klein JC, Behrens TEJ, Pozzilli C, Matthews PM, Rushworth MFS, Johansen-Berg H (2007) Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J Neurosci 27:10259–10269PubMedPubMedCentral
go back to reference Vargas CD, Olivier E, Craighero L, Fadiga L, Duhamel JR, Sirigu A (2004) The influence of hand posture on corticospinal excitability during motor imagery: a transcranial magnetic stimulation study. Cereb Cortex 14:1200–1206PubMed Vargas CD, Olivier E, Craighero L, Fadiga L, Duhamel JR, Sirigu A (2004) The influence of hand posture on corticospinal excitability during motor imagery: a transcranial magnetic stimulation study. Cereb Cortex 14:1200–1206PubMed
go back to reference Verhagen L, Dijkerman HC, Grol MJ, Toni I (2008) Perceptuo-motor interactions during prehension movements. J Neurosci 28:4726–4735PubMedPubMedCentral Verhagen L, Dijkerman HC, Grol MJ, Toni I (2008) Perceptuo-motor interactions during prehension movements. J Neurosci 28:4726–4735PubMedPubMedCentral
go back to reference Vul E, Kanwisher N, Kanwisher N (2010) Begging the question: the nonindependence error in fMRI data analysis. In: Hanson S, Bunzl M (eds) Foundational issues for human brain mapping. MIT Press, Cambridge, pp 71–91 Vul E, Kanwisher N, Kanwisher N (2010) Begging the question: the nonindependence error in fMRI data analysis. In: Hanson S, Bunzl M (eds) Foundational issues for human brain mapping. MIT Press, Cambridge, pp 71–91
go back to reference Winawer J, Huk AC, Boroditsky L (2010) A motion aftereffect from visual imagery of motion. Cognition 114:276–284PubMed Winawer J, Huk AC, Boroditsky L (2010) A motion aftereffect from visual imagery of motion. Cognition 114:276–284PubMed
go back to reference Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217PubMed Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217PubMed
go back to reference Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882PubMed Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882PubMed
go back to reference Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157PubMed Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157PubMed
go back to reference Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 17:641–649 Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 17:641–649
Metadata
Title
Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation
Authors
Simona Monaco
Giulia Malfatti
Alessandro Zendron
Elisa Pellencin
Luca Turella
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01970-1

Other articles of this Issue 9/2019

Brain Structure and Function 9/2019 Go to the issue