Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Magnetic Resonance Imaging | Research

Patients with degenerative cervical myelopathy exhibit neurophysiological improvement upon extension and flexion: a retrospective cohort study with a minimum 1-year follow-up

Authors: Zhengran Yu, Jiacheng Chen, Xing Cheng, Dingxiang Xie, Yuguang Chen, Xuenong Zou, Xinsheng Peng

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Cervical extension and flexion are presumably harmful to patients with degenerative cervical myelopathy (DCM) because they worsen medullary compression visible on dynamic magnetic resonance imaging (MRI). Dynamic somatosensory evoked potentials (SSEPs) are an objective tool to measure the electrophysiological function of the spinal cord at different neck positions. In contrast to previous hypotheses, a considerable proportion of patients with DCM present improved SSEPs upon extension and flexion compared to a neutral position.

Methods

Patients with DCM who underwent preoperative dynamic SSEP examinations and subsequent decompression surgeries between 2015 and 2019 were retrospectively evaluated. We compared extension and flexion SSEPs with neutral SSEPs in each patient and classified them into extension-improved (EI) or extension-nonimproved (EN) and flexion-improved (FI) or flexion-nonimproved (FN) groups. Preoperative clinical evaluations, decompression surgical methods and one-year follow-up clinical data were recorded. Cervical spondylolisthesis and cervical alignment types were evaluated on plain cervical lateral radiographs. The number of stenotic segments, Mühle stenosis grade and disc degeneration stage of the most severe segment, and presence of ligamentum flavum hypertrophy and intramedullary T2 weighted imaging (T2WI) hyperintensity were evaluated on lateral and axial MRI. Data were compared between the EN and EN groups or FI and FN groups with T-tests, chi-square tests or Kruskal-Wallis tests. Prediction criteria were determined with logistic regression analyses.

Results

Forty-nine patients were included, and 9 (18.4%) and 11 (22.4%) showed improved extension and flexion SSEPs compared to their own neutral SSEPs, respectively. Interestingly, EI or FI patients had significantly better one-year postoperative mJOA recoveries than EN or FN patients (T-test, P < 0.001). Moreover, the disease duration (T-test, P = 0.024), involved segment number (Kruskal-Wallis test, P < 0.001), and cervical alignment type (chi-square test, P = 0.005) varied significantly between the EI and EN groups. The FI group presented a significantly higher Mühle stenosis grade than the FN group (Kruskal-Wallis test, P = 0.038). Furthermore, ≤ 2 involved segments and straight or sigmoid cervical alignment were significant criteria predicting improved extension SSEPs (probability: 85.7%), while Mühle stenosis Grade 3 and disease duration ≤6 months were significant criteria predicting improved flexion SSEPs (probability: 85.7%).

Conclusions

Our findings provide evidence for neurophysiological improvement in patients with DCM at extension and flexion and its significance in predicting prognoses. Moreover, certain clinical and radiographic criteria may help predict neurophysiological improvement upon extension or flexion.

Trial registration

[2020]151”. Retrospectively registered on April 30, 2020.
Literature
1.
go back to reference Muhle C, Weinert D, Falliner A, Wiskirchen J, Metzner J, Baumer M, et al. Dynamic changes of the spinal canal in patients with cervical spondylosis at flexion and extension using magnetic resonance imaging. Investig Radiol. 1998;33(8):444–9.CrossRef Muhle C, Weinert D, Falliner A, Wiskirchen J, Metzner J, Baumer M, et al. Dynamic changes of the spinal canal in patients with cervical spondylosis at flexion and extension using magnetic resonance imaging. Investig Radiol. 1998;33(8):444–9.CrossRef
2.
go back to reference Ordway NR, Seymour RJ, Donelson RG, Hojnowski LS, Edwards WT. Cervical flexion, extension, protrusion, and retraction. A radiographic segmental analysis. Spine (Phila Pa 1976). 1999;24(3):240–7.CrossRef Ordway NR, Seymour RJ, Donelson RG, Hojnowski LS, Edwards WT. Cervical flexion, extension, protrusion, and retraction. A radiographic segmental analysis. Spine (Phila Pa 1976). 1999;24(3):240–7.CrossRef
3.
go back to reference Jha SC, Miyazaki M, Tsumura H. Kinetic change of spinal cord compression on flexion-extension magnetic resonance imaging in cervical spine. Clin Neurol Neurosurg. 2018;174:86–91.CrossRef Jha SC, Miyazaki M, Tsumura H. Kinetic change of spinal cord compression on flexion-extension magnetic resonance imaging in cervical spine. Clin Neurol Neurosurg. 2018;174:86–91.CrossRef
4.
go back to reference de Arruda Serra Gaspar MI, Cliquet A Jr, Fernandes Lima VM, de Abreu DC. Relationship between median nerve somatosensory evoked potentials and spinal cord injury levels in patients with quadriplegia. Spinal Cord. 2009;47(5):372–8.CrossRef de Arruda Serra Gaspar MI, Cliquet A Jr, Fernandes Lima VM, de Abreu DC. Relationship between median nerve somatosensory evoked potentials and spinal cord injury levels in patients with quadriplegia. Spinal Cord. 2009;47(5):372–8.CrossRef
5.
go back to reference Morishita Y, Hida S, Naito M, Matsushima U. Evaluation of cervical spondylotic myelopathy using somatosensory-evoked potentials. Int Orthop. 2005;29(6):343–6.CrossRef Morishita Y, Hida S, Naito M, Matsushima U. Evaluation of cervical spondylotic myelopathy using somatosensory-evoked potentials. Int Orthop. 2005;29(6):343–6.CrossRef
6.
go back to reference Keramat KU, Gaughran A. Safe physiotherapy interventions in large cervical disc herniations. BMJ Case Rep. 2012;2012:bcr2012006864. Keramat KU, Gaughran A. Safe physiotherapy interventions in large cervical disc herniations. BMJ Case Rep. 2012;2012:bcr2012006864.
7.
go back to reference Qi Q, Huang S, Ling Z, Chen Y, Hu H, Zhan P, et al. A new diagnostic medium for cervical Spondylotic myelopathy: dynamic somatosensory evoked potentials. World Neurosurg. 2020;133:e225–32.CrossRef Qi Q, Huang S, Ling Z, Chen Y, Hu H, Zhan P, et al. A new diagnostic medium for cervical Spondylotic myelopathy: dynamic somatosensory evoked potentials. World Neurosurg. 2020;133:e225–32.CrossRef
8.
go back to reference Yu Z, Lin K, Chen J, Chen KH, Guo W, Dai Y, et al. Magnetic resonance imaging and dynamic X-ray's correlations with dynamic electrophysiological findings in cervical spondylotic myelopathy: a retrospective cohort study. BMC Neurol. 2020;20(1):367.CrossRef Yu Z, Lin K, Chen J, Chen KH, Guo W, Dai Y, et al. Magnetic resonance imaging and dynamic X-ray's correlations with dynamic electrophysiological findings in cervical spondylotic myelopathy: a retrospective cohort study. BMC Neurol. 2020;20(1):367.CrossRef
9.
go back to reference Benzel EC, Lancon J, Kesterson L, Hadden T. Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J Spinal Disord. 1991;4(3):286–95.CrossRef Benzel EC, Lancon J, Kesterson L, Hadden T. Cervical laminectomy and dentate ligament section for cervical spondylotic myelopathy. J Spinal Disord. 1991;4(3):286–95.CrossRef
10.
go back to reference Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, et al. IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol. 1994;91(1):6–11.CrossRef Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, et al. IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol. 1994;91(1):6–11.CrossRef
11.
go back to reference Li Z, Xue Y, He D, Tang Y, Ding H, Wang Y, et al. Extensive laminectomy for multilevel cervical stenosis with ligamentum flavum hypertrophy: more than 10 years follow-up. Eur Spine J. 2015;24(8):1605–12.CrossRef Li Z, Xue Y, He D, Tang Y, Ding H, Wang Y, et al. Extensive laminectomy for multilevel cervical stenosis with ligamentum flavum hypertrophy: more than 10 years follow-up. Eur Spine J. 2015;24(8):1605–12.CrossRef
12.
go back to reference Muhle C, Wiskirchen J, Brinkmann G, Falliner A, Weinert D, Reuter M, et al. Kinematic MRI in degenerative cervical spine changes. Rofo. 1995;163(2):148–54.CrossRef Muhle C, Wiskirchen J, Brinkmann G, Falliner A, Weinert D, Reuter M, et al. Kinematic MRI in degenerative cervical spine changes. Rofo. 1995;163(2):148–54.CrossRef
13.
go back to reference Miyazaki M, Hong SW, Yoon SH, Morishita Y, Wang JC. Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration. J Spinal Disord Tech. 2008;21(4):288–92.CrossRef Miyazaki M, Hong SW, Yoon SH, Morishita Y, Wang JC. Reliability of a magnetic resonance imaging-based grading system for cervical intervertebral disc degeneration. J Spinal Disord Tech. 2008;21(4):288–92.CrossRef
14.
go back to reference Boulos AS, Lovely TJ. Degenerative cervical spondylolisthesis: diagnosis and management in five cases. J Spinal Disord. 1996;9(3):241–5.CrossRef Boulos AS, Lovely TJ. Degenerative cervical spondylolisthesis: diagnosis and management in five cases. J Spinal Disord. 1996;9(3):241–5.CrossRef
15.
go back to reference Park MS, Moon SH, Oh JK, Lee HW, Riew KD. Natural history of cervical degenerative Spondylolisthesis. Spine (Phila Pa 1976). 2019;44(1):E7–E12.CrossRef Park MS, Moon SH, Oh JK, Lee HW, Riew KD. Natural history of cervical degenerative Spondylolisthesis. Spine (Phila Pa 1976). 2019;44(1):E7–E12.CrossRef
16.
go back to reference Ohara A, Miyamoto K, Naganawa T, Matsumoto K, Shimizu K. Reliabilities of and correlations among five standard methods of assessing the sagittal alignment of the cervical spine. Spine (Phila Pa 1976). 2006;31(22):2585–91 discussion 2592.CrossRef Ohara A, Miyamoto K, Naganawa T, Matsumoto K, Shimizu K. Reliabilities of and correlations among five standard methods of assessing the sagittal alignment of the cervical spine. Spine (Phila Pa 1976). 2006;31(22):2585–91 discussion 2592.CrossRef
17.
go back to reference Huberty CJ. Problems with stepwise methods-better alternatives. Adv Soc Sci Methodol. 1989;1:43–70. Huberty CJ. Problems with stepwise methods-better alternatives. Adv Soc Sci Methodol. 1989;1:43–70.
18.
go back to reference Morishita Y, Maeda T, Ueta T, Naito M, Shiba K. Dynamic somatosensory evoked potentials to determine electrophysiological effects on the spinal cord during cervical spine extension: clinical article. J Neurosurg Spine. 2013;19(3):288–92.CrossRef Morishita Y, Maeda T, Ueta T, Naito M, Shiba K. Dynamic somatosensory evoked potentials to determine electrophysiological effects on the spinal cord during cervical spine extension: clinical article. J Neurosurg Spine. 2013;19(3):288–92.CrossRef
19.
go back to reference Muhle C, Wiskirchen J, Weinert D, Falliner A, Wesner F, Brinkmann G, et al. Biomechanical aspects of the subarachnoid space and cervical cord in healthy individuals examined with kinematic magnetic resonance imaging. Spine (Phila Pa 1976). 1998;23(5):556–67.CrossRef Muhle C, Wiskirchen J, Weinert D, Falliner A, Wesner F, Brinkmann G, et al. Biomechanical aspects of the subarachnoid space and cervical cord in healthy individuals examined with kinematic magnetic resonance imaging. Spine (Phila Pa 1976). 1998;23(5):556–67.CrossRef
20.
go back to reference Muhle C, Metzner J, Weinert D, Falliner A, Brinkmann G, Mehdorn MH, et al. Classification system based on kinematic MR imaging in cervical spondylitic myelopathy. AJNR Am J Neuroradiol. 1998;19(9):1763–71.PubMedPubMedCentral Muhle C, Metzner J, Weinert D, Falliner A, Brinkmann G, Mehdorn MH, et al. Classification system based on kinematic MR imaging in cervical spondylitic myelopathy. AJNR Am J Neuroradiol. 1998;19(9):1763–71.PubMedPubMedCentral
21.
go back to reference Hattou L, Morandi X, Le Reste PJ, Guillin R, Riffaud L, Henaux PL. Dynamic cervical myelopathy in young adults. Eur Spine J. 2014;23(7):1515–22.CrossRef Hattou L, Morandi X, Le Reste PJ, Guillin R, Riffaud L, Henaux PL. Dynamic cervical myelopathy in young adults. Eur Spine J. 2014;23(7):1515–22.CrossRef
22.
go back to reference Milligan J, Ryan K, Fehlings M, Bauman C. Degenerative cervical myelopathy: diagnosis and management in primary care. Can Fam Physician. 2019;65(9):619–24.PubMedPubMedCentral Milligan J, Ryan K, Fehlings M, Bauman C. Degenerative cervical myelopathy: diagnosis and management in primary care. Can Fam Physician. 2019;65(9):619–24.PubMedPubMedCentral
23.
go back to reference Keramat KU, Gaughran A. Safe physiotherapy interventions in large cervical disc herniations. BMJ Case Rep. 2012;2012. Keramat KU, Gaughran A. Safe physiotherapy interventions in large cervical disc herniations. BMJ Case Rep. 2012;2012.
24.
go back to reference Zhang L, Zeitoun D, Rangel A, Lazennec JY, Catonné Y, Pascal-Moussellard H. Preoperative evaluation of the cervical Spondylotic myelopathy with flexion-extension magnetic resonance imaging. Spine (Phila Pa 1976). 2011;36(17):E1134–9.CrossRef Zhang L, Zeitoun D, Rangel A, Lazennec JY, Catonné Y, Pascal-Moussellard H. Preoperative evaluation of the cervical Spondylotic myelopathy with flexion-extension magnetic resonance imaging. Spine (Phila Pa 1976). 2011;36(17):E1134–9.CrossRef
25.
go back to reference Montano N, Ricciardi L, Olivi A. Comparison of anterior cervical decompression and fusion versus Laminoplasty in the treatment of multilevel cervical Spondylotic myelopathy: a Meta-analysis of clinical and radiological outcomes. World Neurosurg. 2019;130(530–536):e532. Montano N, Ricciardi L, Olivi A. Comparison of anterior cervical decompression and fusion versus Laminoplasty in the treatment of multilevel cervical Spondylotic myelopathy: a Meta-analysis of clinical and radiological outcomes. World Neurosurg. 2019;130(530–536):e532.
26.
go back to reference Tetreault LA, Kopjar B, Vaccaro A, Yoon ST, Arnold PM, Massicotte EM, et al. A clinical prediction model to determine outcomes in patients with cervical spondylotic myelopathy undergoing surgical treatment: data from the prospective, multi-center AOSpine North America study. J Bone Joint Surg Am. 2013;95(18):1659–66.CrossRef Tetreault LA, Kopjar B, Vaccaro A, Yoon ST, Arnold PM, Massicotte EM, et al. A clinical prediction model to determine outcomes in patients with cervical spondylotic myelopathy undergoing surgical treatment: data from the prospective, multi-center AOSpine North America study. J Bone Joint Surg Am. 2013;95(18):1659–66.CrossRef
27.
go back to reference Zeitoun D, El Hajj F, Sariali E, Catonné Y, Pascal-Moussellard H. Evaluation of spinal cord compression and hyperintense intramedullary lesions on T2-weighted sequences in patients with cervical spondylotic myelopathy using flexion-extension MRI protocol. Spine J. 2015;15(4):668–74.CrossRef Zeitoun D, El Hajj F, Sariali E, Catonné Y, Pascal-Moussellard H. Evaluation of spinal cord compression and hyperintense intramedullary lesions on T2-weighted sequences in patients with cervical spondylotic myelopathy using flexion-extension MRI protocol. Spine J. 2015;15(4):668–74.CrossRef
28.
go back to reference Hayashi T, Wang JC, Suzuki A, Takahashi S, Scott TP, Phan K, et al. Risk factors for missed dynamic canal stenosis in the cervical spine. Spine (Phila Pa 1976). 2014;39(10):812–9.CrossRef Hayashi T, Wang JC, Suzuki A, Takahashi S, Scott TP, Phan K, et al. Risk factors for missed dynamic canal stenosis in the cervical spine. Spine (Phila Pa 1976). 2014;39(10):812–9.CrossRef
29.
go back to reference Zhong G, Buser Z, Lao L, Yin R, Wang JC. Kinematic relationship between missed ligamentum flavum bulge and degenerative factors in the cervical spine. Spine J. 2015;15(10):2216–21.CrossRef Zhong G, Buser Z, Lao L, Yin R, Wang JC. Kinematic relationship between missed ligamentum flavum bulge and degenerative factors in the cervical spine. Spine J. 2015;15(10):2216–21.CrossRef
30.
go back to reference Tamai K, Grisdela P Jr, Romanu J, Paholpak P, Buser Z, Wang JC. Kinematic characteristics of patients with cervical imbalance: a weight-bearing dynamic MRI study. Eur Spine J. 2019;28(5):1200–8.CrossRef Tamai K, Grisdela P Jr, Romanu J, Paholpak P, Buser Z, Wang JC. Kinematic characteristics of patients with cervical imbalance: a weight-bearing dynamic MRI study. Eur Spine J. 2019;28(5):1200–8.CrossRef
31.
go back to reference Chen CJ, Hsu HL, Niu CC, Chen TY, Chen MC, Tseng YC, et al. Cervical degenerative disease at flexion-extension MR imaging: prediction criteria. Radiology. 2003;227(1):136–42.CrossRef Chen CJ, Hsu HL, Niu CC, Chen TY, Chen MC, Tseng YC, et al. Cervical degenerative disease at flexion-extension MR imaging: prediction criteria. Radiology. 2003;227(1):136–42.CrossRef
32.
go back to reference Suzuki A, Daubs MD, Inoue H, Hayashi T, Aghdasi B, Montgomery SR, et al. Prevalence and motion characteristics of degenerative cervical spondylolisthesis in the symptomatic adult. Spine (Phila Pa 1976). 2013;38(17):E1115–20.CrossRef Suzuki A, Daubs MD, Inoue H, Hayashi T, Aghdasi B, Montgomery SR, et al. Prevalence and motion characteristics of degenerative cervical spondylolisthesis in the symptomatic adult. Spine (Phila Pa 1976). 2013;38(17):E1115–20.CrossRef
33.
go back to reference Liu S, Lafage R, Smith JS, Protopsaltis TS, Lafage VC, Challier V, et al. Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy. J Neurosurg Spine. 2015;23(6):690–700.CrossRef Liu S, Lafage R, Smith JS, Protopsaltis TS, Lafage VC, Challier V, et al. Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy. J Neurosurg Spine. 2015;23(6):690–700.CrossRef
Metadata
Title
Patients with degenerative cervical myelopathy exhibit neurophysiological improvement upon extension and flexion: a retrospective cohort study with a minimum 1-year follow-up
Authors
Zhengran Yu
Jiacheng Chen
Xing Cheng
Dingxiang Xie
Yuguang Chen
Xuenong Zou
Xinsheng Peng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02641-1

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue