Skip to main content
Top
Published in: European Radiology 12/2022

24-06-2022 | Magnetic Resonance Imaging | Magnetic Resonance

MRI-based radiomics signature for identification of invisible basal cisterns changes in tuberculous meningitis: a preliminary multicenter study

Authors: Qiong Ma, Yinqiao Yi, Tiejun Liu, Xinnian Wen, Fei Shan, Feng Feng, Qinqin Yan, Jie Shen, Guang Yang, Yuxin Shi

Published in: European Radiology | Issue 12/2022

Login to get access

Abstract

Objective

To develop and evaluate a radiomics signature based on magnetic resonance imaging (MRI) from multicenter datasets for identification of invisible basal cisterns changes in tuberculous meningitis (TBM) patients.

Methods

Our retrospective study enrolled 184 TBM patients and 187 non-TBM controls from 3 Chinese hospitals (training dataset, 158 TBM patients and 159 non-TBM controls; testing dataset, 26 TBM patients and 28 non-TBM controls). nnU-Net was used to segment basal cisterns in fluid-attenuated inversion recovery (FLAIR) images. Subsequently, radiomics features were extracted from segmented basal cisterns in FLAIR and T2-weighted (T2W) images. Feature selection was carried out in three steps. Support vector machine (SVM) and logistic regression (LR) classifiers were applied to construct the radiomics signature to directly identify basal cisterns changes in TBM patients. Finally, the diagnostic performance was evaluated by the receiver operating characteristic (ROC) curve analysis, calibration curve, and decision curve analysis (DCA).

Results

The segmentation model achieved the mean Dice coefficients of 0.920 and 0.727 in the training and testing datasets, respectively. The SVM model with 7 T2WI–based radiomics features achieved best discrimination capability for basal cisterns changes with an AUC of 0.796 (95% CI, 0.744–0.847) in the training dataset, and an AUC of 0.751 (95% CI, 0.617–0.886) with good calibration in the testing dataset. DCA confirmed its clinical usefulness.

Conclusion

The T2WI–based radiomics signature combined with deep learning segmentation could provide a fully automatic, non-invasive tool to identify invisible changes of basal cisterns, which has the potential to assist in the diagnosis of TBM.

Key Points

• The T2WI–based radiomics signature was useful for identifying invisible basal cistern changes in TBM.
• The nnU-Net model achieved acceptable results for the auto-segmentation of basal cisterns.
• Combining radiomics and deep learning segmentation provided an automatic, non-invasive approach to assist in the diagnosis of TBM.
Literature
2.
go back to reference Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE (2019) The neurocritical care of tuberculous meningitis. Lancet Neurol 18:771–783CrossRefPubMed Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE (2019) The neurocritical care of tuberculous meningitis. Lancet Neurol 18:771–783CrossRefPubMed
3.
go back to reference Imran D, Estiasari R, Maharani K et al (2018) Presentation, etiology, and outcome of brain infections in an Indonesian hospital: a cohort study. Neurol Clin Pract 8:379–388CrossRefPubMedPubMedCentral Imran D, Estiasari R, Maharani K et al (2018) Presentation, etiology, and outcome of brain infections in an Indonesian hospital: a cohort study. Neurol Clin Pract 8:379–388CrossRefPubMedPubMedCentral
4.
go back to reference Wang YY, Xie BD (2018) Progress on diagnosis of tuberculous meningitis. Methods Mol Biol 1754:375–386CrossRefPubMed Wang YY, Xie BD (2018) Progress on diagnosis of tuberculous meningitis. Methods Mol Biol 1754:375–386CrossRefPubMed
5.
go back to reference Marais S, Thwaites G, Schoeman JF et al (2010) Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 10:803–812CrossRefPubMed Marais S, Thwaites G, Schoeman JF et al (2010) Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 10:803–812CrossRefPubMed
6.
go back to reference Bernaerts A, Vanhoenacker FM, Parizel PM et al (2003) Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 13:1876–1890CrossRefPubMed Bernaerts A, Vanhoenacker FM, Parizel PM et al (2003) Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 13:1876–1890CrossRefPubMed
7.
go back to reference Khatri GD, Krishnan V, Antil N, Saigal G (2018) Magnetic resonance imaging spectrum of intracranial tubercular lesions: one disease, many faces. Pol J Radiol 83:e524–e535CrossRefPubMedPubMedCentral Khatri GD, Krishnan V, Antil N, Saigal G (2018) Magnetic resonance imaging spectrum of intracranial tubercular lesions: one disease, many faces. Pol J Radiol 83:e524–e535CrossRefPubMedPubMedCentral
8.
go back to reference Wilkinson RJ, Rohlwink U, Misra UK et al (2017) Tuberculous meningitis. Nat Rev Neurol 13:581–598CrossRefPubMed Wilkinson RJ, Rohlwink U, Misra UK et al (2017) Tuberculous meningitis. Nat Rev Neurol 13:581–598CrossRefPubMed
9.
go back to reference Kumar S, Singh P, Vyas S et al (2021) Assessment of blood-brain barrier integrity in tuberculous meningitis using dynamic contrast-enhanced MR perfusion. Indian J Radiol Imaging 31:30–36PubMedPubMedCentral Kumar S, Singh P, Vyas S et al (2021) Assessment of blood-brain barrier integrity in tuberculous meningitis using dynamic contrast-enhanced MR perfusion. Indian J Radiol Imaging 31:30–36PubMedPubMedCentral
10.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446CrossRefPubMedPubMedCentral
11.
go back to reference Reginelli A, Nardone V, Giacobbe G et al (2021) Radiomics as a new frontier of imaging for cancer prognosis: a narrative review. Diagnostics (Basel) 11:1796CrossRefPubMedPubMedCentral Reginelli A, Nardone V, Giacobbe G et al (2021) Radiomics as a new frontier of imaging for cancer prognosis: a narrative review. Diagnostics (Basel) 11:1796CrossRefPubMedPubMedCentral
12.
go back to reference Abdel Razek AAK, Alksas A, Shehata M et al (2021) Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 12:152CrossRefPubMedPubMedCentral Abdel Razek AAK, Alksas A, Shehata M et al (2021) Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging 12:152CrossRefPubMedPubMedCentral
13.
go back to reference Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S (2021) Radiomics and machine learning applications in rectal cancer: current update and future perspectives. World J Gastroenterol 27:5306–5321CrossRefPubMedPubMedCentral Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S (2021) Radiomics and machine learning applications in rectal cancer: current update and future perspectives. World J Gastroenterol 27:5306–5321CrossRefPubMedPubMedCentral
14.
go back to reference Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ (2009) Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging 30:933–941CrossRefPubMed Kassner A, Liu F, Thornhill RE, Tomlinson G, Mikulis DJ (2009) Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging 30:933–941CrossRefPubMed
15.
go back to reference Arnold PG, Kaya E, Reisert M et al (2022) Support vector machine-based spontaneous intracranial hypotension detection on brain MRI. Clin Neuroradiol 32:225–230CrossRefPubMed Arnold PG, Kaya E, Reisert M et al (2022) Support vector machine-based spontaneous intracranial hypotension detection on brain MRI. Clin Neuroradiol 32:225–230CrossRefPubMed
16.
go back to reference Korez R, Likar B, Pernuš F, Vrtovec T (2016) Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention – MICCAI 2016. Springer International Publishing, Cham, pp 433–441CrossRef Korez R, Likar B, Pernuš F, Vrtovec T (2016) Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention – MICCAI 2016. Springer International Publishing, Cham, pp 433–441CrossRef
17.
go back to reference Moeskops P, Wolterink JM, van der Velden BHM et al (2016) Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, pp 478–486CrossRef Moeskops P, Wolterink JM, van der Velden BHM et al (2016) Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Springer International Publishing, Cham, pp 478–486CrossRef
18.
go back to reference Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211CrossRefPubMed
19.
go back to reference Savjani R (2021) nnU-Net: further automating biomedical image autosegmentation. Radiol Imaging. Cancer 3:e209039 Savjani R (2021) nnU-Net: further automating biomedical image autosegmentation. Radiol Imaging. Cancer 3:e209039
20.
go back to reference Ma J, Wang Y, An X et al (2021) Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection segmentation. Med Phys 48:1197–1210CrossRefPubMed Ma J, Wang Y, An X et al (2021) Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection segmentation. Med Phys 48:1197–1210CrossRefPubMed
21.
go back to reference Heller N, Isensee F, Maier-Hein KH et al (2021) The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med Image Anal 67:101821CrossRefPubMed Heller N, Isensee F, Maier-Hein KH et al (2021) The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med Image Anal 67:101821CrossRefPubMed
22.
go back to reference Huo L, Hu X, Xiao Q, Gu Y, Chu X, Jiang L (2021) Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Magn Reson Imaging 82:31–41CrossRefPubMed Huo L, Hu X, Xiao Q, Gu Y, Chu X, Jiang L (2021) Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images. Magn Reson Imaging 82:31–41CrossRefPubMed
23.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp 234–241CrossRef Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing, Cham, pp 234–241CrossRef
25.
26.
go back to reference Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ (2019) The pathogenesis of tuberculous meningitis. J Leukoc Biol 105:267–280CrossRefPubMed Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ (2019) The pathogenesis of tuberculous meningitis. J Leukoc Biol 105:267–280CrossRefPubMed
27.
go back to reference Simmons CP, Thwaites GE, Quyen NT et al (2006) Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. J Immunol 176:2007–2014CrossRefPubMed Simmons CP, Thwaites GE, Quyen NT et al (2006) Pretreatment intracerebral and peripheral blood immune responses in Vietnamese adults with tuberculous meningitis: diagnostic value and relationship to disease severity and outcome. J Immunol 176:2007–2014CrossRefPubMed
28.
go back to reference Cresswell FV, Davis AG, Sharma K et al (2019) Recent developments in tuberculous meningitis pathogenesis and diagnostics. Wellcome Open Res 4:164CrossRefPubMed Cresswell FV, Davis AG, Sharma K et al (2019) Recent developments in tuberculous meningitis pathogenesis and diagnostics. Wellcome Open Res 4:164CrossRefPubMed
29.
go back to reference Choudhary N, Vyas S, Modi M et al (2021) MR vessel wall imaging in tubercular meningitis. Neuroradiology 63:1627–1634CrossRefPubMed Choudhary N, Vyas S, Modi M et al (2021) MR vessel wall imaging in tubercular meningitis. Neuroradiology 63:1627–1634CrossRefPubMed
31.
go back to reference Vadivelu S, Effendi S, Starke JR, Luerssen TG, Jea A (2013) A review of the neurological and neurosurgical implications of tuberculosis in children. Clin Pediatr (Phila) 52:1135–1143CrossRefPubMed Vadivelu S, Effendi S, Starke JR, Luerssen TG, Jea A (2013) A review of the neurological and neurosurgical implications of tuberculosis in children. Clin Pediatr (Phila) 52:1135–1143CrossRefPubMed
32.
go back to reference Zhou X, Yi Y, Liu Z et al (2019) Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer. Ann Surg Oncol 26:1676–1684CrossRefPubMedPubMedCentral Zhou X, Yi Y, Liu Z et al (2019) Radiomics-based pretherapeutic prediction of non-response to neoadjuvant therapy in locally advanced rectal cancer. Ann Surg Oncol 26:1676–1684CrossRefPubMedPubMedCentral
33.
go back to reference Kamran S, Bener AB, Alper D, Bakshi R (2004) Role of fluid-attenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 28:68–72CrossRefPubMed Kamran S, Bener AB, Alper D, Bakshi R (2004) Role of fluid-attenuated inversion recovery in the diagnosis of meningitis: comparison with contrast-enhanced magnetic resonance imaging. J Comput Assist Tomogr 28:68–72CrossRefPubMed
Metadata
Title
MRI-based radiomics signature for identification of invisible basal cisterns changes in tuberculous meningitis: a preliminary multicenter study
Authors
Qiong Ma
Yinqiao Yi
Tiejun Liu
Xinnian Wen
Fei Shan
Feng Feng
Qinqin Yan
Jie Shen
Guang Yang
Yuxin Shi
Publication date
24-06-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 12/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08911-3

Other articles of this Issue 12/2022

European Radiology 12/2022 Go to the issue