Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2019

Open Access 01-12-2019 | Magnetic Resonance Imaging | Case report

Intranasal dexmedetomidine and intravenous ketamine for procedural sedation in a child with alpha-mannosidosis: a magic bullet?

Authors: Matteo Trevisan, Sara Romano, Egidio Barbi, Irene Bruno, Flora Maria Murru, Giorgio Cozzi

Published in: Italian Journal of Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Procedural sedation is increasingly needed in pediatrics. Although different drugs or drugs association are available, which is the safest and most efficient has yet to be defined, especially in syndromic children with increased sedation-related risk factors.

Case report

we report the case of a five-year-old child affected by alpha-mannosidosis who required procedural sedation for an MRI scan and a lumbar puncture. We administered intranasal dexmedetomidine (4 μg/kg) 45 min before intravenous cannulation, followed by one bolus of ketamine (1 mg/kg) for each procedure. The patient maintained spontaneous breathing and no desaturation or any complication occurred.

Conclusion

intranasal dexmedetomidine and intravenous ketamine could be a feasible option for MRI and lumbar puncture in children with alpha-mannosidosis needing sedation.
Literature
1.
go back to reference Pascolo P, Peri F, Montico M, et al. Needle-related pain and distress management during needle-related procedures in children with and without intellectual disability. Eur J Pediatr. 2018;177:1753–60.PubMedCrossRef Pascolo P, Peri F, Montico M, et al. Needle-related pain and distress management during needle-related procedures in children with and without intellectual disability. Eur J Pediatr. 2018;177:1753–60.PubMedCrossRef
2.
go back to reference Cozzi G, et al. Combination of intranasal dexmedetomidine and oral midazolam as sedation for pediatric MRI. Paediatr Anaesth. 2017;27:976–7.PubMedCrossRef Cozzi G, et al. Combination of intranasal dexmedetomidine and oral midazolam as sedation for pediatric MRI. Paediatr Anaesth. 2017;27:976–7.PubMedCrossRef
4.
go back to reference Lund AM, et al. Comprehensive long-term efficacy and safety of recombinant human alpha-mannosidase (velmanase alfa) treatment in patients with alpha-mannosidosis. J Inherit Metab Dis. 2018;41:1225–33.PubMedPubMedCentralCrossRef Lund AM, et al. Comprehensive long-term efficacy and safety of recombinant human alpha-mannosidase (velmanase alfa) treatment in patients with alpha-mannosidosis. J Inherit Metab Dis. 2018;41:1225–33.PubMedPubMedCentralCrossRef
5.
go back to reference Walker R, et al. Anaesthesia and airway management in mucopolysaccharidosis. J Inherit Metab Dis. 2013;36:211–9.PubMedCrossRef Walker R, et al. Anaesthesia and airway management in mucopolysaccharidosis. J Inherit Metab Dis. 2013;36:211–9.PubMedCrossRef
6.
go back to reference Green SM, Roback MG, Kennedy RM, Krauss B. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Ann Emerg Med. 2011;57:449–61.PubMedCrossRef Green SM, Roback MG, Kennedy RM, Krauss B. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Ann Emerg Med. 2011;57:449–61.PubMedCrossRef
7.
go back to reference Roback MG, Carlson DW, Babl FE, Kennedy RM. Update on pharmacological management of procedural sedation for children. Curr Opin Anaesthesiol. 2016;29:S21–35.PubMedCrossRef Roback MG, Carlson DW, Babl FE, Kennedy RM. Update on pharmacological management of procedural sedation for children. Curr Opin Anaesthesiol. 2016;29:S21–35.PubMedCrossRef
8.
go back to reference Green SM, et al. Predictors of Airway and Respiratory Adverse Events With Ketamine Sedation in the Emergency Department: An Individual-Patient Data Meta-analysis of 8,282 Children. Ann Emerg Med. 2009;54:158–168.e4.PubMedCrossRef Green SM, et al. Predictors of Airway and Respiratory Adverse Events With Ketamine Sedation in the Emergency Department: An Individual-Patient Data Meta-analysis of 8,282 Children. Ann Emerg Med. 2009;54:158–168.e4.PubMedCrossRef
9.
go back to reference Brown L, et al. Adjunctive atropine is unnecessary during ketamine sedation in children. Acad Emerg Med. 2008;15:314–8.PubMedCrossRef Brown L, et al. Adjunctive atropine is unnecessary during ketamine sedation in children. Acad Emerg Med. 2008;15:314–8.PubMedCrossRef
11.
go back to reference Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115:171–82.PubMedCrossRef Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115:171–82.PubMedCrossRef
12.
go back to reference Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The Effects of Increasing Plasma Concentrations of Dexmedetomidine in Humans. Anesthesiol J Am Soc Anesthesiol. 2000;93:382–94. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The Effects of Increasing Plasma Concentrations of Dexmedetomidine in Humans. Anesthesiol J Am Soc Anesthesiol. 2000;93:382–94.
13.
go back to reference Yuen VM, et al. ORIGINAL ARTICLE: optimal timing for the administration of intranasal dexmedetomidine for premedication in children. Anaesthesia. 2010;65:922–9.PubMedCrossRef Yuen VM, et al. ORIGINAL ARTICLE: optimal timing for the administration of intranasal dexmedetomidine for premedication in children. Anaesthesia. 2010;65:922–9.PubMedCrossRef
15.
go back to reference Ghai B, Jain K, Saxena AK, Bhatia N, Sodhi KS. Comparison of oral midazolam with intranasal dexmedetomidine premedication for children undergoing CT imaging: a randomized, double-blind, and controlled study. Pediatr Anesth. 2017;27:37–44.CrossRef Ghai B, Jain K, Saxena AK, Bhatia N, Sodhi KS. Comparison of oral midazolam with intranasal dexmedetomidine premedication for children undergoing CT imaging: a randomized, double-blind, and controlled study. Pediatr Anesth. 2017;27:37–44.CrossRef
16.
go back to reference Peng K, Wu S, Ji F, Li J. Premedication with dexmedetomidine in pediatric patients: a systematic review and meta-analysis. Clinics (Sao Paulo). 2014;69:777–86.CrossRef Peng K, Wu S, Ji F, Li J. Premedication with dexmedetomidine in pediatric patients: a systematic review and meta-analysis. Clinics (Sao Paulo). 2014;69:777–86.CrossRef
17.
go back to reference Cravero JP, et al. Incidence and Nature of Adverse Events During Pediatric Sedation/Anesthesia for Procedures Outside the Operating Room: Report From the Pediatric Sedation Research Consortium. Pediatrics. 2006;118:1087 LP–1096.CrossRef Cravero JP, et al. Incidence and Nature of Adverse Events During Pediatric Sedation/Anesthesia for Procedures Outside the Operating Room: Report From the Pediatric Sedation Research Consortium. Pediatrics. 2006;118:1087 LP–1096.CrossRef
18.
go back to reference Cozzi G, Norbedo S, Barbi E. Intranasal Dexmedetomidine for procedural sedation in children, a suitable alternative to chloral hydrate. Pediatr Drugs. 2017;19:107–11.CrossRef Cozzi G, Norbedo S, Barbi E. Intranasal Dexmedetomidine for procedural sedation in children, a suitable alternative to chloral hydrate. Pediatr Drugs. 2017;19:107–11.CrossRef
19.
go back to reference Luscri N, Tobias JD. Monitored anesthesia care with a combination of ketamine and dexmedetomidine during magnetic resonance imaging in three children with trisomy 21 and obstructive sleep apnea. Paediatr Anaesth. 2006;16:782–6.PubMedCrossRef Luscri N, Tobias JD. Monitored anesthesia care with a combination of ketamine and dexmedetomidine during magnetic resonance imaging in three children with trisomy 21 and obstructive sleep apnea. Paediatr Anaesth. 2006;16:782–6.PubMedCrossRef
20.
go back to reference Kandil, A. et al. Comparison of the combination of dexmedetomidine and ketamine to propofol or propofol/sevoflurane for drug-induced sleep endoscopy in children. Pediatr. Anesth. 2016;26:742–751.CrossRef Kandil, A. et al. Comparison of the combination of dexmedetomidine and ketamine to propofol or propofol/sevoflurane for drug-induced sleep endoscopy in children. Pediatr. Anesth. 2016;26:742–751.CrossRef
21.
go back to reference Kako H, et al. Dexmedetomidine and ketamine sedation for muscle biopsies in patients with Duchenne muscular dystrophy. Pediatr Anesth. 2014;24:851–6.CrossRef Kako H, et al. Dexmedetomidine and ketamine sedation for muscle biopsies in patients with Duchenne muscular dystrophy. Pediatr Anesth. 2014;24:851–6.CrossRef
22.
go back to reference Goyal R, Shukla RN, Patra AK, Bhargava DV, Singh S. Ketodex, a combination of dexmedetomidine and ketamine for upper gastrointestinal endoscopy in children: a preliminary report. J Anesth. 2012;27:461–3.PubMedCrossRef Goyal R, Shukla RN, Patra AK, Bhargava DV, Singh S. Ketodex, a combination of dexmedetomidine and ketamine for upper gastrointestinal endoscopy in children: a preliminary report. J Anesth. 2012;27:461–3.PubMedCrossRef
23.
go back to reference Joshi VS, Kollu SS, Sharma RM. Comparison of dexmedetomidine and ketamine versus propofol and ketamine for procedural sedation in children undergoing minor cardiac procedures in cardiac catheterization laboratory. Ann Card Anaesth. 2017;20:422–6.PubMedPubMedCentralCrossRef Joshi VS, Kollu SS, Sharma RM. Comparison of dexmedetomidine and ketamine versus propofol and ketamine for procedural sedation in children undergoing minor cardiac procedures in cardiac catheterization laboratory. Ann Card Anaesth. 2017;20:422–6.PubMedPubMedCentralCrossRef
24.
go back to reference Qiao H, Xie Z, Jia J. Pediatric premedication: a double-blind randomized trial of dexmedetomidine or ketamine alone versus a combination of dexmedetomidine and ketamine. BMC Anesthesiol. 2017;17:158.PubMedPubMedCentralCrossRef Qiao H, Xie Z, Jia J. Pediatric premedication: a double-blind randomized trial of dexmedetomidine or ketamine alone versus a combination of dexmedetomidine and ketamine. BMC Anesthesiol. 2017;17:158.PubMedPubMedCentralCrossRef
25.
go back to reference McVey JD, Tobias JD. Dexmedetomidine and ketamine for sedation during spinal anesthesia in children. J Clin Anesth. 2010;22:538–45.PubMedCrossRef McVey JD, Tobias JD. Dexmedetomidine and ketamine for sedation during spinal anesthesia in children. J Clin Anesth. 2010;22:538–45.PubMedCrossRef
26.
go back to reference Yang F, et al. Analysis of 17 948 pediatric patients undergoing procedural sedation with a combination of intranasal dexmedetomidine and ketamine. Pediatr Anesth. 2019;29:85–91.CrossRef Yang F, et al. Analysis of 17 948 pediatric patients undergoing procedural sedation with a combination of intranasal dexmedetomidine and ketamine. Pediatr Anesth. 2019;29:85–91.CrossRef
27.
go back to reference Jia J-E, Chen J-Y, Hu X, Li W-X. A randomised study of intranasal dexmedetomidine and oral ketamine for premedication in children. Anaesthesia. 2013;68:944–9.PubMedCrossRef Jia J-E, Chen J-Y, Hu X, Li W-X. A randomised study of intranasal dexmedetomidine and oral ketamine for premedication in children. Anaesthesia. 2013;68:944–9.PubMedCrossRef
28.
go back to reference Rozmiarek A, Corridore M, Tobias JD. Dexmedetomidine-ketamine sedation during bone marrow aspirate and biopsy in a patient with duchenne muscular dystrophy. Saudi J Anaesth. 2011;5:219–22.PubMedPubMedCentralCrossRef Rozmiarek A, Corridore M, Tobias JD. Dexmedetomidine-ketamine sedation during bone marrow aspirate and biopsy in a patient with duchenne muscular dystrophy. Saudi J Anaesth. 2011;5:219–22.PubMedPubMedCentralCrossRef
29.
go back to reference Levanen J, Makela ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced Cardiostimulatory effects and Postanesthetic delirium. Anesthesiol J Am Soc Anesthesiol. 1995;82:1117–25. Levanen J, Makela ML, Scheinin H. Dexmedetomidine premedication attenuates ketamine-induced Cardiostimulatory effects and Postanesthetic delirium. Anesthesiol J Am Soc Anesthesiol. 1995;82:1117–25.
Metadata
Title
Intranasal dexmedetomidine and intravenous ketamine for procedural sedation in a child with alpha-mannosidosis: a magic bullet?
Authors
Matteo Trevisan
Sara Romano
Egidio Barbi
Irene Bruno
Flora Maria Murru
Giorgio Cozzi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2019
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-019-0711-1

Other articles of this Issue 1/2019

Italian Journal of Pediatrics 1/2019 Go to the issue