Skip to main content
Top
Published in: Skeletal Radiology 7/2022

01-07-2022 | Magnetic Resonance Imaging | Technical Report

Improving visualization of the articular cartilage of the knee with magnetic resonance imaging under axial traction: a comparative study of different traction weights

Authors: Naoya Kikuchi, Sho Kohyama, Akihiro Kanamori, Yu Taniguchi, Kosuke Okuno, Kotaro Ikeda, Masashi Yamazaki

Published in: Skeletal Radiology | Issue 7/2022

Login to get access

Abstract

Objective

Lesions of the articular cartilage of the knee, especially early grades, are not always accurately detected by magnetic resonance imaging (MRI) because of contact between the articular cartilage surfaces of the femur and the tibia. This study aimed to assess the effects of axial leg traction during knee MRI examination on joint space widening and articular cartilage visualization and evaluate the ideal weight for traction.

Methods

MRI was performed on ten healthy volunteers using a 3-T MRI unit with a 3D dual-echo steady-state gradient-recalled echo sequence. Conventional MRI was performed first, followed by traction MRI. The traction weight increased in the order of 5 kg, 10 kg, and 15 kg. Joint space widths were measured, and articular cartilage visualization was assessed at the medial and lateral tibiofemoral joints. Volunteers were asked to evaluate pain and discomfort using a visual analog scale during each procedure with axial traction to assess the safety of traction MRI.

Results

The medial tibiofemoral joint space width significantly increased, and the visualization of the articular cartilage significantly improved by applying traction. The joint space width and the articular cartilage visualization showed no significant differences among traction weights of 5 kg, 10 kg, and 15 kg. Pain and discomfort during traction MRI examination were lowest with a traction weight of 5 kg.

Conclusion

Traction MRI examination may be useful in evaluating articular cartilage lesions at the medial tibiofemoral joint. A traction weight of 5 kg may be sufficient with minimum pain and discomfort.
Literature
1.
go back to reference Phelan N, Rowland P, Galvin R, O’Byrne JM. A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1525–39.CrossRef Phelan N, Rowland P, Galvin R, O’Byrne JM. A systematic review and meta-analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1525–39.CrossRef
2.
go back to reference von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M. The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthroscopy. 2007;23(5):496–502.CrossRef von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M. The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthroscopy. 2007;23(5):496–502.CrossRef
3.
go back to reference von Engelhardt LV, Lahner M, Klussmann A, et al. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord. 2010;11:75.CrossRef von Engelhardt LV, Lahner M, Klussmann A, et al. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord. 2010;11:75.CrossRef
4.
go back to reference Kohl S, Meier S, Ahmad SS, et al. Accuracy of cartilage-specific 3-Tesla 3D-DESS magnetic resonance imaging in the diagnosis of chondral lesions: comparison with knee arthroscopy. J Orthop Surg Res. 2015;10:191.CrossRef Kohl S, Meier S, Ahmad SS, et al. Accuracy of cartilage-specific 3-Tesla 3D-DESS magnetic resonance imaging in the diagnosis of chondral lesions: comparison with knee arthroscopy. J Orthop Surg Res. 2015;10:191.CrossRef
5.
go back to reference Evangelopoulos DS, Huesler M, Ahmad SS, et al. Mapping tibiofemoral gonarthrosis: an MRI analysis of non-traumatic knee cartilage defects. Br J Radiol. 2015;88(1052):20140542.CrossRef Evangelopoulos DS, Huesler M, Ahmad SS, et al. Mapping tibiofemoral gonarthrosis: an MRI analysis of non-traumatic knee cartilage defects. Br J Radiol. 2015;88(1052):20140542.CrossRef
6.
go back to reference Gagliardi JA, Chung EM, Chandnani VP, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. Am J Roentgenol. 1994;163(3):629–36.CrossRef Gagliardi JA, Chung EM, Chandnani VP, et al. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. Am J Roentgenol. 1994;163(3):629–36.CrossRef
7.
go back to reference Harman M, Ipeksoy U, Dogan A, Arslan H, Etlik O. MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system. Clin Imaging. 2003;27:194–9.CrossRef Harman M, Ipeksoy U, Dogan A, Arslan H, Etlik O. MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system. Clin Imaging. 2003;27:194–9.CrossRef
8.
go back to reference Lecouvet FE, Dorzée B, Dubuc JE, Vande Berg BC, Jamart J, Malghem J. Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol. 2007;17(7):1763–71.CrossRef Lecouvet FE, Dorzée B, Dubuc JE, Vande Berg BC, Jamart J, Malghem J. Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol. 2007;17(7):1763–71.CrossRef
9.
go back to reference Simoni P, Leyder PP, Albert A, et al. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study. Skeletal Radiol. 2014;43(2):169–78.CrossRef Simoni P, Leyder PP, Albert A, et al. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study. Skeletal Radiol. 2014;43(2):169–78.CrossRef
10.
go back to reference Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol. 2003;32(5):259–65.CrossRef Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol. 2003;32(5):259–65.CrossRef
11.
go back to reference Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2015;25(4):961–9.CrossRef Omoumi P, Rubini A, Dubuc JE, Vande Berg BC, Lecouvet FE. Diagnostic performance of CT-arthrography and 1.5T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol. 2015;25(4):961–9.CrossRef
12.
go back to reference Mathieu L, Bouchard A, Marchaland JP, et al. Knee MR-arthrography in assessment of meniscal and chondral lesions. Orthop Traumatol Surg Res. 2009;95(1):40–7.CrossRef Mathieu L, Bouchard A, Marchaland JP, et al. Knee MR-arthrography in assessment of meniscal and chondral lesions. Orthop Traumatol Surg Res. 2009;95(1):40–7.CrossRef
13.
go back to reference Palhais NS, Guntern D, Kagel A, Wettstein M, Mouhsine E, Theumann N. Direct magnetic resonance arthrography of the knee: utility of axial traction. Eur Radiol. 2009;19(9):2225–31.CrossRef Palhais NS, Guntern D, Kagel A, Wettstein M, Mouhsine E, Theumann N. Direct magnetic resonance arthrography of the knee: utility of axial traction. Eur Radiol. 2009;19(9):2225–31.CrossRef
14.
go back to reference Saupe N, Zanetti M, Pfirrmann CWA, Wels T, Schwenke C, Hodler J. Pain and other side effects after MR arthrography: prospective evaluation in 1085 patients. Radiology. 2009;250(3):830–8.CrossRef Saupe N, Zanetti M, Pfirrmann CWA, Wels T, Schwenke C, Hodler J. Pain and other side effects after MR arthrography: prospective evaluation in 1085 patients. Radiology. 2009;250(3):830–8.CrossRef
15.
go back to reference Newberg AH, Munn CS, Robbins AH. Complications of arthrography. Radiology. 1985;155(3):605–6.CrossRef Newberg AH, Munn CS, Robbins AH. Complications of arthrography. Radiology. 1985;155(3):605–6.CrossRef
16.
go back to reference Becce F, Richarme D, Omoumi P, et al. Direct MR arthrography of the shoulder under axial traction: feasibility study to evaluate the superior labrum-biceps tendon complex and articular cartilage. J Magn Reson Imaging. 2013;37(5):1228–33.CrossRef Becce F, Richarme D, Omoumi P, et al. Direct MR arthrography of the shoulder under axial traction: feasibility study to evaluate the superior labrum-biceps tendon complex and articular cartilage. J Magn Reson Imaging. 2013;37(5):1228–33.CrossRef
17.
go back to reference Cerny M, Marlois R, Theumann N, et al. 3-T direct MR arthrography of the wrist: value of finger trap distraction to assess intrinsic ligament and triangular fibrocartilage complex tears. Eur J Radiol. 2013;82(10):e582–9.CrossRef Cerny M, Marlois R, Theumann N, et al. 3-T direct MR arthrography of the wrist: value of finger trap distraction to assess intrinsic ligament and triangular fibrocartilage complex tears. Eur J Radiol. 2013;82(10):e582–9.CrossRef
18.
go back to reference Fox MG, Petrey WB, Alford B, Huynh BH, Patrie JT, Anderson MW. Shoulder MR arthrography: intraarticular anesthetic reduces periprocedural pain and major motion artifacts but does not decrease imaging time. Radiology. 2012;262(2):576–83.CrossRef Fox MG, Petrey WB, Alford B, Huynh BH, Patrie JT, Anderson MW. Shoulder MR arthrography: intraarticular anesthetic reduces periprocedural pain and major motion artifacts but does not decrease imaging time. Radiology. 2012;262(2):576–83.CrossRef
19.
go back to reference Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966;19(1):3–11.CrossRef Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966;19(1):3–11.CrossRef
20.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRef Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.CrossRef
21.
go back to reference Kohyama S, Tanaka T, Shimasaki K, et al. Effect of elbow MRI with axial traction on articular cartilage visibility—a feasibility study. Skeletal Radiol. 2020;49(10):1555–66.CrossRef Kohyama S, Tanaka T, Shimasaki K, et al. Effect of elbow MRI with axial traction on articular cartilage visibility—a feasibility study. Skeletal Radiol. 2020;49(10):1555–66.CrossRef
22.
go back to reference Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–82.CrossRef Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–82.CrossRef
23.
go back to reference Niemeyer P, Pestka JM, Erggelet C, Steinwachs M, Salzmann GM, Südkamp NP. Comparison of arthroscopic and open assessment of size and grade of cartilage defects of the knee. Arthroscopy. 2011;27(1):46–51.CrossRef Niemeyer P, Pestka JM, Erggelet C, Steinwachs M, Salzmann GM, Südkamp NP. Comparison of arthroscopic and open assessment of size and grade of cartilage defects of the knee. Arthroscopy. 2011;27(1):46–51.CrossRef
24.
go back to reference Hiranaka T, Furumatsu T, Kamatsuki Y, et al. Posttraumatic cartilage degradation progresses following anterior cruciate ligament reconstruction: a second-look arthroscopic evaluation. J Orthop Sci. 2019;24(6):1058–63.CrossRef Hiranaka T, Furumatsu T, Kamatsuki Y, et al. Posttraumatic cartilage degradation progresses following anterior cruciate ligament reconstruction: a second-look arthroscopic evaluation. J Orthop Sci. 2019;24(6):1058–63.CrossRef
25.
go back to reference Cooke D, Scudamore A, Li J, Wyss U, Bryant T, Costigan P. Axial lower-limb alignment: comparison of knee geometry in normal volunteers and osteoarthritis patients. Osteoarthr Cartil. 1997;5(1):39–47.CrossRef Cooke D, Scudamore A, Li J, Wyss U, Bryant T, Costigan P. Axial lower-limb alignment: comparison of knee geometry in normal volunteers and osteoarthritis patients. Osteoarthr Cartil. 1997;5(1):39–47.CrossRef
26.
go back to reference Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470(1):45–53.CrossRef Bellemans J, Colyn W, Vandenneucker H, Victor J. The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res. 2012;470(1):45–53.CrossRef
27.
go back to reference Llopis E, Cerezal L, Kassarjian A, Higueras V, Fernandez E. Direct MR arthrography of the hip with leg traction: feasibility for assessing articular cartilage. Am J Roentgenol. 2008;190(4):1124–8.CrossRef Llopis E, Cerezal L, Kassarjian A, Higueras V, Fernandez E. Direct MR arthrography of the hip with leg traction: feasibility for assessing articular cartilage. Am J Roentgenol. 2008;190(4):1124–8.CrossRef
28.
go back to reference Lavdas E, Vlychou M, Zaloni E, et al. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging. Skeletal Radiol. 2015;44(11):1619–26.CrossRef Lavdas E, Vlychou M, Zaloni E, et al. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging. Skeletal Radiol. 2015;44(11):1619–26.CrossRef
29.
go back to reference Nagatomo K, Yabuuchi H, Yamasaki Y, et al. Efficacy of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for shoulder magnetic resonance (MR) imaging. Eur J Radiol. 2016;85(10):1735–43.CrossRef Nagatomo K, Yabuuchi H, Yamasaki Y, et al. Efficacy of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for shoulder magnetic resonance (MR) imaging. Eur J Radiol. 2016;85(10):1735–43.CrossRef
30.
go back to reference Clauser CE, McConville JT, Young JW. Weight volume and center of mass of segments of the human body. AMRL Technical Report. Ohio: Wright Patterson Air Force Base; 1969.CrossRef Clauser CE, McConville JT, Young JW. Weight volume and center of mass of segments of the human body. AMRL Technical Report. Ohio: Wright Patterson Air Force Base; 1969.CrossRef
31.
go back to reference Niitsu M, Ikeda K, Iiai Y. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament. Eur Radiol. 1998;8(1):113–5.CrossRef Niitsu M, Ikeda K, Iiai Y. Slightly flexed knee position within a standard knee coil: MR delineation of the anterior cruciate ligament. Eur Radiol. 1998;8(1):113–5.CrossRef
Metadata
Title
Improving visualization of the articular cartilage of the knee with magnetic resonance imaging under axial traction: a comparative study of different traction weights
Authors
Naoya Kikuchi
Sho Kohyama
Akihiro Kanamori
Yu Taniguchi
Kosuke Okuno
Kotaro Ikeda
Masashi Yamazaki
Publication date
01-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology / Issue 7/2022
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-021-03971-w

Other articles of this Issue 7/2022

Skeletal Radiology 7/2022 Go to the issue