Skip to main content
Top

Open Access 24-04-2024 | Magnetic Resonance Imaging | Research

Enhanced Spatial Fuzzy C-Means Algorithm for Brain Tissue Segmentation in T1 Images

Authors: Bahram Jafrasteh, Manuel Lubián-Gutiérrez, Simón Pedro Lubián-López, Isabel Benavente-Fernández

Published in: Neuroinformatics

Login to get access

Abstract

Magnetic Resonance Imaging (MRI) plays an important role in neurology, particularly in the precise segmentation of brain tissues. Accurate segmentation is crucial for diagnosing brain injuries and neurodegenerative conditions. We introduce an Enhanced Spatial Fuzzy C-means (esFCM) algorithm for 3D T1 MRI segmentation to three tissues, i.e. White Matter (WM), Gray Matter (GM), and Cerebrospinal Fluid (CSF). The esFCM employs a weighted least square algorithm utilizing the Structural Similarity Index (SSIM) for polynomial bias field correction. It also takes advantage of the information from the membership function of the last iteration to compute neighborhood impact. This strategic refinement enhances the algorithm’s adaptability to complex image structures, effectively addressing challenges such as intensity irregularities and contributing to heightened segmentation accuracy. We compare the segmentation accuracy of esFCM against four variants of FCM, Gaussian Mixture Model (GMM) and FSL and ANTs algorithms using four various dataset, employing three measurement criteria. Comparative assessments underscore esFCM’s superior performance, particularly in scenarios involving added noise and bias fields.The obtained results emphasize the significant potential of the proposed method in the segmentation of MRI images.
Appendix
Available only for authorised users
Literature
go back to reference Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). Conditional spatial fuzzy c-means clustering algorithm for segmentation of mri images. Applied soft computing, 34, 758–769.CrossRef Adhikari, S. K., Sing, J. K., Basu, D. K., & Nasipuri, M. (2015). Conditional spatial fuzzy c-means clustering algorithm for segmentation of mri images. Applied soft computing, 34, 758–769.CrossRef
go back to reference Al-Dmour, H., & Al-Ani, A. (2018). A clustering fusion technique for mr brain tissue segmentation. Neurocomputing, 275, 546–559.CrossRef Al-Dmour, H., & Al-Ani, A. (2018). A clustering fusion technique for mr brain tissue segmentation. Neurocomputing, 275, 546–559.CrossRef
go back to reference Avants, B. B., Tustison, N. J., Wu, J., Cook, P. A., & Gee, J. C. (2011). An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics, 9, 381–400.CrossRefPubMedPubMedCentral Avants, B. B., Tustison, N. J., Wu, J., Cook, P. A., & Gee, J. C. (2011). An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics, 9, 381–400.CrossRefPubMedPubMedCentral
go back to reference Brebisson, A., & Montana, G. (2015). Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28. Brebisson, A., & Montana, G. (2015). Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28.
go back to reference Chahal, P. K., & Pandey, S. (2023). A hybrid weighted fuzzy approach for brain tumor segmentation using mr images. Neural Computing and Applications, 35(33), 23877–23891.CrossRef Chahal, P. K., & Pandey, S. (2023). A hybrid weighted fuzzy approach for brain tumor segmentation using mr images. Neural Computing and Applications, 35(33), 23877–23891.CrossRef
go back to reference Chuang, K. -S., Tzeng, H. -L., Chen, S., Wu, J., & Chen, T. -J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30(1), 9–15. Chuang, K. -S., Tzeng, H. -L., Chen, S., Wu, J., & Chen, T. -J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics, 30(1), 9–15.
go back to reference Cocosco, C. A. (1997). Brainweb: Online interface to a 3d mri simulated brain database. (No Title). Cocosco, C. A. (1997). Brainweb: Online interface to a 3d mri simulated brain database. (No Title).
go back to reference Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., & Evans, A. C. (1998). Design and construction of a realistic digital brain phantom. IEEE transactions on medical imaging, 17(3), 463–468.CrossRefPubMed Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., & Evans, A. C. (1998). Design and construction of a realistic digital brain phantom. IEEE transactions on medical imaging, 17(3), 463–468.CrossRefPubMed
go back to reference Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. In: Healthcare, vol. 9, p. 153. MDPI. Díaz-Pernas, F.J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. (2021). A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. In: Healthcare, vol. 9, p. 153. MDPI.
go back to reference Ding, Y., Acosta, R., Enguix, V., Suffren, S., Ortmann, J., Luck, D., Dolz, J., & Lodygensky, G. A. (2020). Using deep convolutional neural networks for neonatal brain image segmentation. Frontiers in neuroscience, 14, 207.CrossRefPubMedPubMedCentral Ding, Y., Acosta, R., Enguix, V., Suffren, S., Ortmann, J., Luck, D., Dolz, J., & Lodygensky, G. A. (2020). Using deep convolutional neural networks for neonatal brain image segmentation. Frontiers in neuroscience, 14, 207.CrossRefPubMedPubMedCentral
go back to reference Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). State-of-the-art methods for brain tissue segmentation: A review. IEEE reviews in biomedical engineering, 10, 235–249.CrossRefPubMed Dora, L., Agrawal, S., Panda, R., & Abraham, A. (2017). State-of-the-art methods for brain tissue segmentation: A review. IEEE reviews in biomedical engineering, 10, 235–249.CrossRefPubMed
go back to reference Gao, H., Xu, W., Sun, J., & Tang, Y. (2009). Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE transactions on instrumentation and measurement, 59(4), 934–946.CrossRef Gao, H., Xu, W., Sun, J., & Tang, Y. (2009). Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm. IEEE transactions on instrumentation and measurement, 59(4), 934–946.CrossRef
go back to reference Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained gaussian mixture model framework for automatic segmentation of mr brain images. IEEE transactions on medical imaging, 25(9), 1233–1245.CrossRefPubMed Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained gaussian mixture model framework for automatic segmentation of mr brain images. IEEE transactions on medical imaging, 25(9), 1233–1245.CrossRefPubMed
go back to reference Hua, L., Gu, Y., Gu, X., Xue, J., & Ni, T. (2021). A novel brain mri image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Frontiers in Neuroscience, 15, 662674.CrossRefPubMedPubMedCentral Hua, L., Gu, Y., Gu, X., Xue, J., & Ni, T. (2021). A novel brain mri image segmentation method using an improved multi-view fuzzy c-means clustering algorithm. Frontiers in Neuroscience, 15, 662674.CrossRefPubMedPubMedCentral
go back to reference Jafrasteh, B., López, S. P. L., & Fernández, I. B. (2023). Melage: A purely python based neuroimaging software (neonatal). arXiv preprint arXiv:2309.07175 Jafrasteh, B., López, S. P. L., & Fernández, I. B. (2023). Melage: A purely python based neuroimaging software (neonatal). arXiv preprint arXiv:​2309.​07175
go back to reference Ji, Z.-X., Sun, Q.-S., & Xia, D.-S. (2011). A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain mr image. Computerized Medical Imaging and Graphics, 35(5), 383–397.CrossRefPubMed Ji, Z.-X., Sun, Q.-S., & Xia, D.-S. (2011). A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain mr image. Computerized Medical Imaging and Graphics, 35(5), 383–397.CrossRefPubMed
go back to reference Kalavathi, P. (2013). Brain tissue segmentation in mr brain images using multiple otsu’s thresholding technique. In: 2013 8th International Conference on Computer Science & Education, pp. 639–642. IEEE. Kalavathi, P. (2013). Brain tissue segmentation in mr brain images using multiple otsu’s thresholding technique. In: 2013 8th International Conference on Computer Science & Education, pp. 639–642. IEEE.
go back to reference Kumar, P., Nagar, P., Arora, C., & Gupta, A. (2018). U-segnet: fully convolutional neural network based automated brain tissue segmentation tool. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3503–3507. IEEE. Kumar, P., Nagar, P., Arora, C., & Gupta, A. (2018). U-segnet: fully convolutional neural network based automated brain tissue segmentation tool. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3503–3507. IEEE.
go back to reference Kwan, R. K. -S., Evans, A. C., & Pike, G. B. (1996). An extensible mri simulator for post-processing evaluation. In: International Conference on Visualization in Biomedical Computing, pp. 135–140. Springer. Kwan, R. K. -S., Evans, A. C., & Pike, G. B. (1996). An extensible mri simulator for post-processing evaluation. In: International Conference on Visualization in Biomedical Computing, pp. 135–140. Springer.
go back to reference Kwan, R.-S., Evans, A. C., & Pike, G. B. (1999). Mri simulation-based evaluation of image-processing and classification methods. IEEE transactions on medical imaging, 18(11), 1085–1097.CrossRefPubMed Kwan, R.-S., Evans, A. C., & Pike, G. B. (1999). Mri simulation-based evaluation of image-processing and classification methods. IEEE transactions on medical imaging, 18(11), 1085–1097.CrossRefPubMed
go back to reference Liao, P.-S., Chen, T.-S., Chung, P.-C., et al. (2001). A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng., 17(5), 713–727. Liao, P.-S., Chen, T.-S., Chung, P.-C., et al. (2001). A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng., 17(5), 713–727.
go back to reference Li, C., Gore, J. C., & Davatzikos, C. (2014). Multiplicative intrinsic component optimization (mico) for mri bias field estimation and tissue segmentation. Magnetic resonance imaging, 32(7), 913–923.CrossRefPubMedPubMedCentral Li, C., Gore, J. C., & Davatzikos, C. (2014). Multiplicative intrinsic component optimization (mico) for mri bias field estimation and tissue segmentation. Magnetic resonance imaging, 32(7), 913–923.CrossRefPubMedPubMedCentral
go back to reference Liu, J., & Zhang, H. (2013). Image segmentation using a local gmm in a variational framework. Journal of mathematical imaging and vision, 46(2), 161–176.CrossRef Liu, J., & Zhang, H. (2013). Image segmentation using a local gmm in a variational framework. Journal of mathematical imaging and vision, 46(2), 161–176.CrossRef
go back to reference Mahata, N., & Sing, J. K. (2020). A novel fuzzy clustering algorithm by minimizing global and spatially constrained likelihood-based local entropies for noisy 3d brain mr image segmentation. Applied Soft Computing, 90, 106171.CrossRef Mahata, N., & Sing, J. K. (2020). A novel fuzzy clustering algorithm by minimizing global and spatially constrained likelihood-based local entropies for noisy 3d brain mr image segmentation. Applied Soft Computing, 90, 106171.CrossRef
go back to reference Maitra, M., et al. (2019). 3d unsupervised modified spatial fuzzy c-means method for segmentation of 3d brain mr image. Pattern Analysis and Applications, 22(4), 1561–1571.CrossRef Maitra, M., et al. (2019). 3d unsupervised modified spatial fuzzy c-means method for segmentation of 3d brain mr image. Pattern Analysis and Applications, 22(4), 1561–1571.CrossRef
go back to reference Miao, J., Zhou, X., & Huang, T.-Z. (2020). Local segmentation of images using an improved fuzzy c-means clustering algorithm based on self-adaptive dictionary learning. Applied Soft Computing, 91, 106200.CrossRef Miao, J., Zhou, X., & Huang, T.-Z. (2020). Local segmentation of images using an improved fuzzy c-means clustering algorithm based on self-adaptive dictionary learning. Applied Soft Computing, 91, 106200.CrossRef
go back to reference Moeskops, P., Viergever, M. A., Mendrik, A. M., De Vries, L. S., Benders, M. J., & Išgum, I. (2016). Automatic segmentation of mr brain images with a convolutional neural network. IEEE transactions on medical imaging, 35(5), 1252–1261.CrossRefPubMed Moeskops, P., Viergever, M. A., Mendrik, A. M., De Vries, L. S., Benders, M. J., & Išgum, I. (2016). Automatic segmentation of mr brain images with a convolutional neural network. IEEE transactions on medical imaging, 35(5), 1252–1261.CrossRefPubMed
go back to reference Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62–66.CrossRef Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62–66.CrossRef
go back to reference Saladi, S., & Amutha Prabha, N. (2018). Mri brain segmentation in combination of clustering methods with markov random field. International Journal of Imaging Systems and Technology, 28(3), 207–216.CrossRef Saladi, S., & Amutha Prabha, N. (2018). Mri brain segmentation in combination of clustering methods with markov random field. International Journal of Imaging Systems and Technology, 28(3), 207–216.CrossRef
go back to reference Sikka, K., Sinha, N., Singh, P. K., & Mishra, A. K. (2009). A fully automated algorithm under modified fcm framework for improved brain mr image segmentation. Magnetic Resonance Imaging, 27(7), 994–1004.CrossRefPubMed Sikka, K., Sinha, N., Singh, P. K., & Mishra, A. K. (2009). A fully automated algorithm under modified fcm framework for improved brain mr image segmentation. Magnetic Resonance Imaging, 27(7), 994–1004.CrossRefPubMed
go back to reference Singh, C., & Bala, A. (2021). An unsupervised orthogonal rotation invariant moment based fuzzy c-means approach for the segmentation of brain magnetic resonance images. Expert Systems with Applications, 164, 113989.CrossRef Singh, C., & Bala, A. (2021). An unsupervised orthogonal rotation invariant moment based fuzzy c-means approach for the segmentation of brain magnetic resonance images. Expert Systems with Applications, 164, 113989.CrossRef
go back to reference Solanki, R., & Kumar, D. (2023). Probabilistic intuitionistic fuzzy c-means algorithm with spatial constraint for human brain mri segmentation. Multimedia Tools and Applications, pp. 1–30. Solanki, R., & Kumar, D. (2023). Probabilistic intuitionistic fuzzy c-means algorithm with spatial constraint for human brain mri segmentation. Multimedia Tools and Applications, pp. 1–30.
go back to reference Tavakoli-Zaniani, M., Sedighi-Maman, Z., & Zarandi, M. H. F. (2021). Segmentation of white matter, grey matter and cerebrospinal fluid from brain mr images using a modified fcm based on double estimation. Biomedical Signal Processing and Control, 68, 102615.CrossRef Tavakoli-Zaniani, M., Sedighi-Maman, Z., & Zarandi, M. H. F. (2021). Segmentation of white matter, grey matter and cerebrospinal fluid from brain mr images using a modified fcm based on double estimation. Biomedical Signal Processing and Control, 68, 102615.CrossRef
go back to reference Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600–612.CrossRefPubMed Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600–612.CrossRefPubMed
go back to reference Yang, L., Tuzel, O., Meer, P., Foran, & D. J. (2008). Automatic image analysis of histopathology specimens using concave vertex graph. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 833–841. Springer. Yang, L., Tuzel, O., Meer, P., Foran, & D. J. (2008). Automatic image analysis of histopathology specimens using concave vertex graph. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 833–841. Springer.
go back to reference Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1), 45–57.CrossRefPubMed Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1), 45–57.CrossRefPubMed
go back to reference Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., & Shen, D. (2015). Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108, 214–224.CrossRefPubMed Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., & Shen, D. (2015). Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 108, 214–224.CrossRefPubMed
go back to reference Zhang, T., Xia, Y., & Feng, D. D. (2014). Hidden markov random field model based brain mr image segmentation using clonal selection algorithm and markov chain monte carlo method. Biomedical Signal Processing and Control, 12, 10–18.CrossRef Zhang, T., Xia, Y., & Feng, D. D. (2014). Hidden markov random field model based brain mr image segmentation using clonal selection algorithm and markov chain monte carlo method. Biomedical Signal Processing and Control, 12, 10–18.CrossRef
Metadata
Title
Enhanced Spatial Fuzzy C-Means Algorithm for Brain Tissue Segmentation in T1 Images
Authors
Bahram Jafrasteh
Manuel Lubián-Gutiérrez
Simón Pedro Lubián-López
Isabel Benavente-Fernández
Publication date
24-04-2024
Publisher
Springer US
Published in
Neuroinformatics
Print ISSN: 1539-2791
Electronic ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-024-09661-x