Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 3/2021

01-03-2021 | Magnetic Resonance Imaging | KNEE

Combination of anterior tibial and femoral tunnels makes the signal intensity of antero-medial graft higher in double-bundle anterior cruciate ligament reconstruction

Authors: Daisuke Chiba, Yuji Yamamoto, Yuka Kimura, Shizuka Sasaki, Eiichi Tsuda, Yasuyuki Ishibashi

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 3/2021

Login to get access

Abstract

Purpose

To elucidate whether sagittal graft tunnel affects the signal intensity in anatomical ACL reconstruction (ACLR) and to clarify the prevalence of intercondylar roof impingement. It was hypothesized that if the tunnel apertures are located within the anatomical footprint of ACL, tunnel position would not affect the signal intensity.

Methods

A total of 132 patients who underwent anatomical double-bundle ACLR (DB-ACLR) using hamstring autograft were recruited. Tunnel position was determined by the quadrant method on three-dimensional computed tomography; the femoral tunnel position was defined as “high and low” or “deep and shallow”, while that of the tibial side was defined as “anterior and posterior” or “medial and lateral”. Subjects were divided into three groups according to the tertile of % deep–shallow. The signal intensity was evaluated by the region of interest value of the antero-medial bundle (AMB) and postero-lateral bundle on magnetic resonance imaging at 12 months after reconstruction. Linear regression analysis was conducted to elucidate the relationship between the percentage position of each tunnel and the graft signal intensity.

Results

In the shallow tertile group, AMB signal intensity increased in the anterior position of the tibial tunnel (β = − 0.34; P = 0.025). In the intermediate and deep tertile groups, the tunnel position did not correlate with the signal intensity.

Conclusions

A more anterior tibial tunnel position increases AMB signal intensity in shallower femoral tunnel. Conversely, this correlation is attenuated for deeper femoral tunnels. Surgeons should pay attention to sagittal femoral tunnel position to create a more anterior tibial tunnel position.

Level of evidence

Level III.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahn JH, Kim JD, Kang HW et al (2015) Anatomic placement of the femoral tunnels in double-bundle anterior cruciate ligament reconstruction correlates with improved graft maturation and clinical outcomes. Arthroscopy 31:2152–2161PubMed Ahn JH, Kim JD, Kang HW et al (2015) Anatomic placement of the femoral tunnels in double-bundle anterior cruciate ligament reconstruction correlates with improved graft maturation and clinical outcomes. Arthroscopy 31:2152–2161PubMed
2.
go back to reference Araujo PH, Asai S, Pinto M et al (2015) ACL graft position affects in situ graft force following ACL reconstruction. J Bone Joint Surg Am 97:1767–1773PubMed Araujo PH, Asai S, Pinto M et al (2015) ACL graft position affects in situ graft force following ACL reconstruction. J Bone Joint Surg Am 97:1767–1773PubMed
3.
go back to reference Bedi A, Maak T, Musahl V et al (2011) Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: An evaluation of time-zero knee stability. Arthroscopy 27:1543–1551PubMed Bedi A, Maak T, Musahl V et al (2011) Effect of tunnel position and graft size in single-bundle anterior cruciate ligament reconstruction: An evaluation of time-zero knee stability. Arthroscopy 27:1543–1551PubMed
4.
go back to reference Bedi A, Maak T, Musahl V et al (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: Is the tibial tunnel position most important? Am J Sports Med 39:366–373PubMed Bedi A, Maak T, Musahl V et al (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: Is the tibial tunnel position most important? Am J Sports Med 39:366–373PubMed
5.
go back to reference Bernard M, Hertel P, Hornung H et al (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21PubMed Bernard M, Hertel P, Hornung H et al (1997) Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 10:14–21PubMed
6.
go back to reference Bernhardson AS, Aman ZS, Dornan GJ et al (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med 47:296–302PubMed Bernhardson AS, Aman ZS, Dornan GJ et al (2019) Tibial slope and its effect on force in anterior cruciate ligament grafts: anterior cruciate ligament force increases linearly as posterior tibial slope increases. Am J Sports Med 47:296–302PubMed
7.
go back to reference Chen L, Wu Y, Lin G et al (2018) Graft bending angle affects allograft tendon maturity early after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:3048–3054PubMed Chen L, Wu Y, Lin G et al (2018) Graft bending angle affects allograft tendon maturity early after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:3048–3054PubMed
8.
go back to reference Chiba D, Tsuda E, Tsukada H et al (2017) Tunnel malpositions in anterior cruciate ligament risk cartilaginous changes and bucket-handle meniscal tear: arthroscopic survey in both primary and revision surgery. J Orthop Sci 22:892–897PubMed Chiba D, Tsuda E, Tsukada H et al (2017) Tunnel malpositions in anterior cruciate ligament risk cartilaginous changes and bucket-handle meniscal tear: arthroscopic survey in both primary and revision surgery. J Orthop Sci 22:892–897PubMed
9.
go back to reference Forsythe B, Kopf S, Wong AK et al (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 92:1418–1426PubMed Forsythe B, Kopf S, Wong AK et al (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 92:1418–1426PubMed
10.
go back to reference George MS, Dunn WR, Spindler KP (2006) Current concepts review: revision anterior cruciate ligament reconstruction. Am J Sports Med 34:2026–2037PubMed George MS, Dunn WR, Spindler KP (2006) Current concepts review: revision anterior cruciate ligament reconstruction. Am J Sports Med 34:2026–2037PubMed
11.
go back to reference Hatayama K, Terauchi M, Saito K et al (2013) The importance of tibial tunnel placement in anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 29:1072–1078PubMed Hatayama K, Terauchi M, Saito K et al (2013) The importance of tibial tunnel placement in anatomic double-bundle anterior cruciate ligament reconstruction. Arthroscopy 29:1072–1078PubMed
12.
go back to reference Hakozaki A, Niki Y, Enomoto H et al (2015) Clinical significance of T2*-weighted gradient-echo MRI to monitor graft maturation over one year after anatomic double-bundle anterior cruciate ligament reconstruction: a comparative study with proton density-weighted MRI. Knee 22:4–10PubMed Hakozaki A, Niki Y, Enomoto H et al (2015) Clinical significance of T2*-weighted gradient-echo MRI to monitor graft maturation over one year after anatomic double-bundle anterior cruciate ligament reconstruction: a comparative study with proton density-weighted MRI. Knee 22:4–10PubMed
13.
go back to reference Hofbauer M, Soldati F, Szomolanyi P et al (2019) Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:130–136PubMed Hofbauer M, Soldati F, Szomolanyi P et al (2019) Hamstring tendon autografts do not show complete graft maturity 6 months postoperatively after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 27:130–136PubMed
14.
go back to reference Howell SM, Clark JA, Farley TE et al (1991) A rationale for predicting anterior cruciate graft impingement by the intercondylar roof: a magnetic resonance imaging study. Am J Sports Med 19:276–282PubMed Howell SM, Clark JA, Farley TE et al (1991) A rationale for predicting anterior cruciate graft impingement by the intercondylar roof: a magnetic resonance imaging study. Am J Sports Med 19:276–282PubMed
15.
go back to reference Howell SM, Berns GS, Farley TE (2009) Unimpinged and impinged anterior cruciate ligament grafts: MR signal intensity measurements. Radiology 179:639–643 Howell SM, Berns GS, Farley TE (2009) Unimpinged and impinged anterior cruciate ligament grafts: MR signal intensity measurements. Radiology 179:639–643
16.
go back to reference Howell SM (1992) Arthroscopic roofplasty: a method for correcting an extension deficit caused by roof impingement of an anterior cruciate ligament graft. Arthroscopy 8:375–379PubMed Howell SM (1992) Arthroscopic roofplasty: a method for correcting an extension deficit caused by roof impingement of an anterior cruciate ligament graft. Arthroscopy 8:375–379PubMed
17.
go back to reference Howell SM, Clark JA (1992) Tibial tunnel placement in anterior cruciate ligament reconstructions and graft impingement. Clin Orthop Relat Res 283:187–195 Howell SM, Clark JA (1992) Tibial tunnel placement in anterior cruciate ligament reconstructions and graft impingement. Clin Orthop Relat Res 283:187–195
18.
go back to reference Hussein M, van Eck CF, Cretnik A et al (2012) Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med 40:512–520PubMed Hussein M, van Eck CF, Cretnik A et al (2012) Prospective randomized clinical evaluation of conventional single-bundle, anatomic single-bundle, and anatomic double-bundle anterior cruciate ligament reconstruction: 281 cases with 3- to 5-year follow-up. Am J Sports Med 40:512–520PubMed
19.
go back to reference Iriuchishima T, Tajima G, Ingham SJ et al (2010) Impingement pressure in the anatomical and nonanatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38:1611–1617PubMed Iriuchishima T, Tajima G, Ingham SJ et al (2010) Impingement pressure in the anatomical and nonanatomical anterior cruciate ligament reconstruction: a cadaver study. Am J Sports Med 38:1611–1617PubMed
20.
go back to reference Jagodzinski M, Leis A, Iselborn KW et al (2003) Impingement pressure and tension forces of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 11:85–90PubMed Jagodzinski M, Leis A, Iselborn KW et al (2003) Impingement pressure and tension forces of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 11:85–90PubMed
21.
go back to reference Jepsen CF, Lundberg-Jensen AK, Faunoe P et al (2007) Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament-reconstructed knee? a clinical, prospective, randomized, double-blind study. Arthroscopy 23:1326–1333PubMed Jepsen CF, Lundberg-Jensen AK, Faunoe P et al (2007) Does the position of the femoral tunnel affect the laxity or clinical outcome of the anterior cruciate ligament-reconstructed knee? a clinical, prospective, randomized, double-blind study. Arthroscopy 23:1326–1333PubMed
23.
go back to reference Kopf S, Forsythe B, Wong AK et al (2012) Transtibial ACL reconstruction technique fails to position drill tunnels anatomically in vivo 3D CT study. Knee Surg Sports Traumatol Arthrosc 20:2200–2207PubMed Kopf S, Forsythe B, Wong AK et al (2012) Transtibial ACL reconstruction technique fails to position drill tunnels anatomically in vivo 3D CT study. Knee Surg Sports Traumatol Arthrosc 20:2200–2207PubMed
24.
go back to reference Lee JK, Lee S, Seong SC et al (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23:2297–2305PubMed Lee JK, Lee S, Seong SC et al (2015) Anatomy of the anterior cruciate ligament insertion sites: comparison of plain radiography and three-dimensional computed tomographic imaging to anatomic dissection. Knee Surg Sports Traumatol Arthrosc 23:2297–2305PubMed
25.
go back to reference Lee MC, Seong SC, Lee S et al (2007) Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 23:771–778PubMed Lee MC, Seong SC, Lee S et al (2007) Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 23:771–778PubMed
26.
go back to reference Loh JC, Fukuda Y, Tsuda E et al (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o'clock and 10 o'clock femoral tunnel placement. Arthroscopy 19:297–304PubMed Loh JC, Fukuda Y, Tsuda E et al (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o'clock and 10 o'clock femoral tunnel placement. Arthroscopy 19:297–304PubMed
27.
go back to reference Mochizuki Y, Kaneko T, Kawahara K et al (2018) The quadrant method measuring four points is as a reliable and accurate as the quadrant method in the evaluation after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2389–2394PubMed Mochizuki Y, Kaneko T, Kawahara K et al (2018) The quadrant method measuring four points is as a reliable and accurate as the quadrant method in the evaluation after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 26:2389–2394PubMed
28.
go back to reference Nagai K, Tashiro Y, Herbst E et al (2018) Steeper posterior tibial slope correlates with greater tibial tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:3717–3723PubMed Nagai K, Tashiro Y, Herbst E et al (2018) Steeper posterior tibial slope correlates with greater tibial tunnel widening after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 26:3717–3723PubMed
29.
go back to reference Navacchia A, Bates NA, Schilaty ND et al (2019) Knee abduction and internal rotation moments increase ACL force during landing through the posterior slope of the Tibia. J Orthop Res 37:1730–1742PubMedPubMedCentral Navacchia A, Bates NA, Schilaty ND et al (2019) Knee abduction and internal rotation moments increase ACL force during landing through the posterior slope of the Tibia. J Orthop Res 37:1730–1742PubMedPubMedCentral
30.
go back to reference Nawabi DH, Tucker S, Schafer KA et al (2016) ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med 44:2563–2571PubMed Nawabi DH, Tucker S, Schafer KA et al (2016) ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med 44:2563–2571PubMed
31.
go back to reference Nohmi S, Ishibashi Y, Tsuda E et al (2012) Biomechanical comparison between single-bundle and double-bundle anterior cruciate ligament reconstruction with hamstring tendon under cyclic loading condition. Sports Med Arthrosc Rehabil Ther Technol 4:23PubMedPubMedCentral Nohmi S, Ishibashi Y, Tsuda E et al (2012) Biomechanical comparison between single-bundle and double-bundle anterior cruciate ligament reconstruction with hamstring tendon under cyclic loading condition. Sports Med Arthrosc Rehabil Ther Technol 4:23PubMedPubMedCentral
32.
go back to reference Ntoulia A, Papadopoulou F, Ristanis S et al (2011) Revascularization process of the bone-patellar tendon-bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med 39:1478–1486PubMed Ntoulia A, Papadopoulou F, Ristanis S et al (2011) Revascularization process of the bone-patellar tendon-bone autograft evaluated by contrast-enhanced magnetic resonance imaging 6 and 12 months after anterior cruciate ligament reconstruction. Am J Sports Med 39:1478–1486PubMed
33.
go back to reference Ntoulia A, Papadopoulou F, Zampeli F et al (2013) Evaluation with contrast-enhanced magnetic resonance imaging of the anterior cruciate ligament graft during its healing process: a two-year prospective study. Skeletal Radiol 42:541–552PubMed Ntoulia A, Papadopoulou F, Zampeli F et al (2013) Evaluation with contrast-enhanced magnetic resonance imaging of the anterior cruciate ligament graft during its healing process: a two-year prospective study. Skeletal Radiol 42:541–552PubMed
34.
go back to reference Sadoghi P, Kröpfl A, Jansson V et al (2011) Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthroscopy 27:355–364PubMed Sadoghi P, Kröpfl A, Jansson V et al (2011) Impact of tibial and femoral tunnel position on clinical results after anterior cruciate ligament reconstruction. Arthroscopy 27:355–364PubMed
35.
go back to reference Sasaki N, Ishibashi Y, Tsuda E et al (2012) The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy 28:1135–1146PubMed Sasaki N, Ishibashi Y, Tsuda E et al (2012) The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy 28:1135–1146PubMed
36.
go back to reference Sasaki S, Tsuda E, Hiraga Y et al (2016) Prospective randomized study of objective and subjective clinical results between double-bundle and single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 44:855–864PubMed Sasaki S, Tsuda E, Hiraga Y et al (2016) Prospective randomized study of objective and subjective clinical results between double-bundle and single-bundle anterior cruciate ligament reconstruction. Am J Sports Med 44:855–864PubMed
37.
go back to reference Saupe N, White LM, Chiavaras MM et al (2008) Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up—correlation with functional and clinical evaluation. Radiology 249:581–590PubMed Saupe N, White LM, Chiavaras MM et al (2008) Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up—correlation with functional and clinical evaluation. Radiology 249:581–590PubMed
38.
go back to reference Shino K, Nakata K, Nakamura N et al (2015) Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 21:1402 Shino K, Nakata K, Nakamura N et al (2015) Anatomically oriented anterior cruciate ligament reconstruction with a bone-patellar tendon-bone graft via rectangular socket and tunnel: a snug-fit and impingement-free grafting technique. Arthroscopy 21:1402
39.
go back to reference Sonoda M, Morikawa T, Tsuchiya K et al (2007) Correlation between knee laxity and graft appearance on magnetic resonance imaging after double-bundle hamstring graft anterior cruciate ligament reconstruction. Am J Sports Med 35:936–942PubMed Sonoda M, Morikawa T, Tsuchiya K et al (2007) Correlation between knee laxity and graft appearance on magnetic resonance imaging after double-bundle hamstring graft anterior cruciate ligament reconstruction. Am J Sports Med 35:936–942PubMed
40.
go back to reference Taketomi S, Inui H, Nakamura K et al (2014) Clinical outcome of anatomic double-bundle ACL reconstruction and 3D CT model-based validation of femoral socket aperture position. Knee Surg Sports Traumatol Arthrosc 22:2194–2201PubMed Taketomi S, Inui H, Nakamura K et al (2014) Clinical outcome of anatomic double-bundle ACL reconstruction and 3D CT model-based validation of femoral socket aperture position. Knee Surg Sports Traumatol Arthrosc 22:2194–2201PubMed
41.
go back to reference Tashiro Y, Gale T, Sundaram V et al (2017) The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction. In vivo analysis with 2 years’ follow-up. Am J Sports Med 45:1829–1836PubMed Tashiro Y, Gale T, Sundaram V et al (2017) The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction. In vivo analysis with 2 years’ follow-up. Am J Sports Med 45:1829–1836PubMed
42.
go back to reference Tensho K, Shimodaira H, Aoki T et al (2014) Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. Am J Sports Med 42:1433–1440PubMed Tensho K, Shimodaira H, Aoki T et al (2014) Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations. Am J Sports Med 42:1433–1440PubMed
43.
go back to reference Tsuda E, Ishibashi Y, Fukuda A et al (2010) Tunnel position and relationship to postoperative knee laxity after double-bundle anterior cruciate ligament reconstruction with a transtibial technique. Am J Sports Med 38:698–706PubMed Tsuda E, Ishibashi Y, Fukuda A et al (2010) Tunnel position and relationship to postoperative knee laxity after double-bundle anterior cruciate ligament reconstruction with a transtibial technique. Am J Sports Med 38:698–706PubMed
44.
go back to reference Tsukada H, Ishibashi Y, Tsuda E et al (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129PubMed Tsukada H, Ishibashi Y, Tsuda E et al (2008) Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints. J Orthop Sci 13:122–129PubMed
45.
go back to reference Tsukada S, Fujishiro H, Watanabe K et al (2014) Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med 42:1110–1117PubMed Tsukada S, Fujishiro H, Watanabe K et al (2014) Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med 42:1110–1117PubMed
46.
go back to reference van Diek FM, Wolf MR, Murawski CD et al (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22:987–994PubMed van Diek FM, Wolf MR, Murawski CD et al (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22:987–994PubMed
47.
go back to reference Vrooijink SH, Wolters F, van Eck CF et al (2011) Measurements of knee morphometrics using MRI and arthroscopy: a comparative study between ACL-injured and non-injured subjects. Knee Surg Sports Traumatol Arthrosc 19:S12–S16PubMed Vrooijink SH, Wolters F, van Eck CF et al (2011) Measurements of knee morphometrics using MRI and arthroscopy: a comparative study between ACL-injured and non-injured subjects. Knee Surg Sports Traumatol Arthrosc 19:S12–S16PubMed
48.
go back to reference Zantop T, Diermann N, Schumacher T et al (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36:678–685PubMed Zantop T, Diermann N, Schumacher T et al (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36:678–685PubMed
Metadata
Title
Combination of anterior tibial and femoral tunnels makes the signal intensity of antero-medial graft higher in double-bundle anterior cruciate ligament reconstruction
Authors
Daisuke Chiba
Yuji Yamamoto
Yuka Kimura
Shizuka Sasaki
Eiichi Tsuda
Yasuyuki Ishibashi
Publication date
01-03-2021
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 3/2021
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-020-06014-4

Other articles of this Issue 3/2021

Knee Surgery, Sports Traumatology, Arthroscopy 3/2021 Go to the issue