Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2022

Open Access 01-12-2022 | Magnetic Resonance Imaging | Research

Characterizing the neurological phenotype of the hyperinsulinism hyperammonemia syndrome

Authors: Elizabeth Rosenfeld, Ravi Prakash Reddy Nanga, Alfredo Lucas, Andrew Y. Revell, Allison Thomas, Nina H. Thomas, David R. Roalf, Russell T. Shinohara, Ravinder Reddy, Kathryn A. Davis, Diva D. De León

Published in: Orphanet Journal of Rare Diseases | Issue 1/2022

Login to get access

Abstract

Background

Hyperinsulinism hyperammonemia (HI/HA) syndrome is caused by activating mutations in GLUD1, encoding glutamate dehydrogenase (GDH). Atypical absence seizures and neuropsychological disorders occur at high rates in this form of hyperinsulinism. Dysregulated central nervous system (CNS) glutamate balance, due to GDH overactivity in the brain, has been hypothesized to play a role. This study aimed to describe the neurologic phenotype in HI/HA syndrome and investigate CNS glutamate levels using glutamate weighted chemical exchange saturation transfer magnetic resonance imaging (GluCEST MRI). In this cross-sectional study, 12 subjects with HI/HA syndrome had plasma ammonia measurement, self- or parent-completed neurocognitive assessments, electroencephalogram (EEG), and GluCEST MRI at 7 T performed. GluCEST MRI measures were compared to a historic reference population of 10 healthy adults.

Results

Subjects were five males and seven females with median age of 25.5 years. Seventy-five percent of subjects reported a history of neurodevelopmental problems and 42% had neurocognitive assessment scores outside the normal range. Fifty percent had interictal EEG findings of generalized, irregular spike and wave discharges. Higher variability in hippocampal GluCEST asymmetry (p = 0.002), and in peak hippocampal GluCEST values (p = 0.008), was observed in HI/HA subjects (n = 9 with interpretable MRI) compared to the healthy reference population (n = 10).

Conclusions

The high prevalence of abnormal neurocognitive assessment scores and interictal EEG findings observed highlights the importance of longitudinal neuropsychological assessment for individuals with HI/HA syndrome. Our findings demonstrate the potential application of GluCEST to investigate persistent knowledge gaps in the mechanisms underlying the unique neurophenotype of this disorder.
Appendix
Available only for authorised users
Literature
1.
go back to reference Snider KE, Becker S, Boyajian L, Shyng SL, MacMullen C, Hughes N, et al. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab. 2013;98(2):E355–63.CrossRef Snider KE, Becker S, Boyajian L, Shyng SL, MacMullen C, Hughes N, et al. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab. 2013;98(2):E355–63.CrossRef
2.
go back to reference Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998;338(19):1352–7.CrossRef Stanley CA, Lieu YK, Hsu BY, Burlina AB, Greenberg CR, Hopwood NJ, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998;338(19):1352–7.CrossRef
3.
go back to reference Hudson RC, Daniel RM. l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B. 1993;106(4):767–92.CrossRef Hudson RC, Daniel RM. l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B. 1993;106(4):767–92.CrossRef
4.
go back to reference Spanaki C, Kotzamani D, Plaitakis A. Widening spectrum of cellular and subcellular expression of human GLUD1 and GLUD2 glutamate dehydrogenases suggests novel functions. Neurochem Res. 2017;42(1):92–107.CrossRef Spanaki C, Kotzamani D, Plaitakis A. Widening spectrum of cellular and subcellular expression of human GLUD1 and GLUD2 glutamate dehydrogenases suggests novel functions. Neurochem Res. 2017;42(1):92–107.CrossRef
5.
go back to reference Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, et al. Neurological aspects of hyperinsulinism–hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50(12):945–9.CrossRef Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, et al. Neurological aspects of hyperinsulinism–hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50(12):945–9.CrossRef
6.
go back to reference Raizen DM, Brooks-Kayal A, Steinkrauss L, Tennekoon GI, Stanley CA, Kelly A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J Pediatr. 2005;146(3):388–94.CrossRef Raizen DM, Brooks-Kayal A, Steinkrauss L, Tennekoon GI, Stanley CA, Kelly A. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J Pediatr. 2005;146(3):388–94.CrossRef
7.
go back to reference MacMullen C, Fang J, Hsu BY, Kelly A, de Lonlay-Debeney P, Saudubray JM, et al. Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab. 2001;86(4):1782–7.PubMed MacMullen C, Fang J, Hsu BY, Kelly A, de Lonlay-Debeney P, Saudubray JM, et al. Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J Clin Endocrinol Metab. 2001;86(4):1782–7.PubMed
8.
go back to reference Su C, Liang XJ, Li WJ, Wu D, Liu M, Cao BY, et al. Clinical and molecular spectrum of glutamate dehydrogenase gene defects in 26 Chinese congenital hyperinsulinemia patients. J Diabetes Res. 2018;2018:2802540.PubMedPubMedCentral Su C, Liang XJ, Li WJ, Wu D, Liu M, Cao BY, et al. Clinical and molecular spectrum of glutamate dehydrogenase gene defects in 26 Chinese congenital hyperinsulinemia patients. J Diabetes Res. 2018;2018:2802540.PubMedPubMedCentral
9.
go back to reference Cai K, Singh A, Roalf DR, Nanga RP, Haris M, Hariharan H, et al. Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR Biomed. 2013;26(10):1278–84.CrossRef Cai K, Singh A, Roalf DR, Nanga RP, Haris M, Hariharan H, et al. Mapping glutamate in subcortical brain structures using high-resolution GluCEST MRI. NMR Biomed. 2013;26(10):1278–84.CrossRef
10.
go back to reference Davis KA, Nanga RP, Das S, Chen SH, Hadar PN, Pollard JR, et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med. 2015;7(309):309ra161.CrossRef Davis KA, Nanga RP, Das S, Chen SH, Hadar PN, Pollard JR, et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med. 2015;7(309):309ra161.CrossRef
11.
go back to reference Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, et al. Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry. 2017;22(9):1298–305.CrossRef Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, et al. Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry. 2017;22(9):1298–305.CrossRef
12.
go back to reference Nanga RPR, DeBrosse C, Kumar D, Roalf D, McGeehan B, D’Aquilla K, et al. Reproducibility of 2D GluCEST in healthy human volunteers at 7 T. Magn Reson Med. 2018;80(5):2033–9.CrossRef Nanga RPR, DeBrosse C, Kumar D, Roalf D, McGeehan B, D’Aquilla K, et al. Reproducibility of 2D GluCEST in healthy human volunteers at 7 T. Magn Reson Med. 2018;80(5):2033–9.CrossRef
13.
go back to reference Harrison P, Oakland T. Adaptive behavior assessment system, third edition (ABAS-3). London: Pearson Education Inc.; 2015. Harrison P, Oakland T. Adaptive behavior assessment system, third edition (ABAS-3). London: Pearson Education Inc.; 2015.
14.
go back to reference Achenbach TM. The Achenbach system of empirically based assessment (ASEBA): development, findings, theory, and applications. Burlington: University of Vermont Research Center for Children, Youth, & Families; 2009. Achenbach TM. The Achenbach system of empirically based assessment (ASEBA): development, findings, theory, and applications. Burlington: University of Vermont Research Center for Children, Youth, & Families; 2009.
15.
go back to reference Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function-second edition (BRIEF2). Lutz: Psychological Assessment Resources, Inc.; 2015. Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior rating inventory of executive function-second edition (BRIEF2). Lutz: Psychological Assessment Resources, Inc.; 2015.
16.
go back to reference Roth RM, Gioia GA. Behavior rating inventory of executive function-adult version (BRIEF-A). Lutz: Psychological Assessment Resources, Inc.; 2005. Roth RM, Gioia GA. Behavior rating inventory of executive function-adult version (BRIEF-A). Lutz: Psychological Assessment Resources, Inc.; 2005.
17.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.CrossRef Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.CrossRef
18.
go back to reference Kapoor RR, Flanagan SE, Fulton P, Chakrapani A, Chadefaux B, Ben-Omran T, et al. Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations. Eur J Endocrinol. 2009;161(5):731–5.CrossRef Kapoor RR, Flanagan SE, Fulton P, Chakrapani A, Chadefaux B, Ben-Omran T, et al. Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations. Eur J Endocrinol. 2009;161(5):731–5.CrossRef
19.
go back to reference De Lonlay P, Benelli C, Fouque F, Ganguly A, Aral B, Dionisi-Vici C, et al. Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr Res. 2001;50(3):353–7.CrossRef De Lonlay P, Benelli C, Fouque F, Ganguly A, Aral B, Dionisi-Vici C, et al. Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr Res. 2001;50(3):353–7.CrossRef
20.
go back to reference Bahi-Buisson N, El Sabbagh S, Soufflet C, Escande F, Boddaert N, Valayannopoulos V, et al. Myoclonic absence epilepsy with photosensitivity and a gain of function mutation in glutamate dehydrogenase. Seizure. 2008;17(7):658–64.CrossRef Bahi-Buisson N, El Sabbagh S, Soufflet C, Escande F, Boddaert N, Valayannopoulos V, et al. Myoclonic absence epilepsy with photosensitivity and a gain of function mutation in glutamate dehydrogenase. Seizure. 2008;17(7):658–64.CrossRef
21.
go back to reference Nakano K, Kobayashi K, Okano Y, Aso K, Ohtsuka Y. Intractable absence seizures in hyperinsulinism–hyperammonemia syndrome. Pediatr Neurol. 2012;47(2):119–22.CrossRef Nakano K, Kobayashi K, Okano Y, Aso K, Ohtsuka Y. Intractable absence seizures in hyperinsulinism–hyperammonemia syndrome. Pediatr Neurol. 2012;47(2):119–22.CrossRef
22.
go back to reference Perez Errazquin F, Sempere Fernandez J, Garcia Martin G, Chamorro Munoz MI, Romero AM. Hyperinsulinism and hyperammonaemia syndrome and severe myoclonic epilepsy of infancy. Neurologia. 2011;26(4):248–52.CrossRef Perez Errazquin F, Sempere Fernandez J, Garcia Martin G, Chamorro Munoz MI, Romero AM. Hyperinsulinism and hyperammonaemia syndrome and severe myoclonic epilepsy of infancy. Neurologia. 2011;26(4):248–52.CrossRef
23.
go back to reference Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, et al. Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci. 2009;29(44):13929–44.CrossRef Bao X, Pal R, Hascup KN, Wang Y, Wang WT, Xu W, et al. Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci. 2009;29(44):13929–44.CrossRef
24.
go back to reference Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18(2):302–6.CrossRef Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, et al. Magnetic resonance imaging of glutamate. Nat Med. 2012;18(2):302–6.CrossRef
25.
go back to reference Ninkovic D, Sarnavka V, Basnec A, Cuk M, Ramadza DP, Fumic K, et al. Hyperinsulinism–hyperammonemia syndrome: a de novo mutation of the GLUD1 gene in twins and a review of the literature. J Pediatr Endocrinol Metab. 2016;29(9):1083–8.CrossRef Ninkovic D, Sarnavka V, Basnec A, Cuk M, Ramadza DP, Fumic K, et al. Hyperinsulinism–hyperammonemia syndrome: a de novo mutation of the GLUD1 gene in twins and a review of the literature. J Pediatr Endocrinol Metab. 2016;29(9):1083–8.CrossRef
26.
go back to reference Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A. Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem Res. 2014;39(3):500–15.CrossRef Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A. Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem Res. 2014;39(3):500–15.CrossRef
28.
go back to reference Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRef Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.CrossRef
Metadata
Title
Characterizing the neurological phenotype of the hyperinsulinism hyperammonemia syndrome
Authors
Elizabeth Rosenfeld
Ravi Prakash Reddy Nanga
Alfredo Lucas
Andrew Y. Revell
Allison Thomas
Nina H. Thomas
David R. Roalf
Russell T. Shinohara
Ravinder Reddy
Kathryn A. Davis
Diva D. De León
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2022
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-022-02398-3

Other articles of this Issue 1/2022

Orphanet Journal of Rare Diseases 1/2022 Go to the issue