Skip to main content
Top
Published in: European Radiology 7/2023

24-01-2023 | Magnetic Resonance Imaging | Imaging Informatics and Artificial Intelligence

Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks

Authors: Ana Jimenez-Pastor, Rafael Lopez-Gonzalez, Belén Fos-Guarinos, Fabio Garcia-Castro, Mark Wittenberg, Asunción Torregrosa-Andrés, Luis Marti-Bonmati, Margarita Garcia-Fontes, Pablo Duarte, Juan Pablo Gambini, Leonardo Kayat Bittencourt, Felipe Campos Kitamura, Vasantha Kumar Venugopal, Vidur Mahajan, Pablo Ros, Emilio Soria-Olivas, Angel Alberich-Bayarri

Published in: European Radiology | Issue 7/2023

Login to get access

Abstract

Objective

Automatic MR imaging segmentation of the prostate provides relevant clinical benefits for prostate cancer evaluation such as calculation of automated PSA density and other critical imaging biomarkers. Further, automated T2-weighted image segmentation of central-transition zone (CZ-TZ), peripheral zone (PZ), and seminal vesicle (SV) can help to evaluate clinically significant cancer following the PI-RADS v2.1 guidelines. Therefore, the main objective of this work was to develop a robust and reproducible CNN-based automatic prostate multi-regional segmentation model using an intercontinental cohort of prostate MRI.

Methods

A heterogeneous database of 243 T2-weighted prostate studies from 7 countries and 10 machines of 3 different vendors, with the CZ-TZ, PZ, and SV regions manually delineated by two experienced radiologists (ground truth), was used to train (n = 123) and test (n = 120) a U-Net-based model with deep supervision using a cyclical learning rate. The performance of the model was evaluated by means of dice similarity coefficient (DSC), among others. Segmentation results with a DSC above 0.7 were considered accurate.

Results

The proposed method obtained a DSC of 0.88 ± 0.01, 0.85 ± 0.02, 0.72 ± 0.02, and 0.72 ± 0.02 for the prostate gland, CZ-TZ, PZ, and SV respectively in the 120 studies of the test set when comparing the predicted segmentations with the ground truth. No statistically significant differences were found in the results obtained between manufacturers or continents.

Conclusion

Prostate multi-regional T2-weighted MR images automatic segmentation can be accurately achieved by U-Net like CNN, generalizable in a highly variable clinical environment with different equipment, acquisition configurations, and population.

Key Points

• Deep learning techniques allows the accurate segmentation of the prostate in three different regions on MR T2w images.
• Multi-centric database proved the generalization of the CNN model on different institutions across different continents.
• CNN models can be used to aid on the diagnosis and follow-up of patients with prostate cancer.
Literature
1.
go back to reference De Visschere P (2018) Improving the diagnosis of clinically significant prostate cancer with magnetic resonance imaging. J Belg Soc Radiol 102(1):22CrossRefPubMedCentral De Visschere P (2018) Improving the diagnosis of clinically significant prostate cancer with magnetic resonance imaging. J Belg Soc Radiol 102(1):22CrossRefPubMedCentral
2.
go back to reference Cui T, Kovell RC, Terlecki RP (2016) Is it time to abandon the digital rectal examination? Lessons from the PLCO Cancer Screening Trial and peer-reviewed literature. Curr Med Res Opin 32(10):1663–1669CrossRefPubMed Cui T, Kovell RC, Terlecki RP (2016) Is it time to abandon the digital rectal examination? Lessons from the PLCO Cancer Screening Trial and peer-reviewed literature. Curr Med Res Opin 32(10):1663–1669CrossRefPubMed
4.
go back to reference Brown LC, Ahmed HU, Faria R et al (2018) Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol Assess 22(39):1–176CrossRefPubMedPubMedCentral Brown LC, Ahmed HU, Faria R et al (2018) Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol Assess 22(39):1–176CrossRefPubMedPubMedCentral
5.
go back to reference Das CJ, Razik A, Netaji A, Verma S (2020) Prostate MRI-TRUS fusion biopsy: a review of the state of the art procedure. Abdom Radiol (NY) 45(7):2176–2183CrossRefPubMed Das CJ, Razik A, Netaji A, Verma S (2020) Prostate MRI-TRUS fusion biopsy: a review of the state of the art procedure. Abdom Radiol (NY) 45(7):2176–2183CrossRefPubMed
6.
go back to reference Dai Z, Carver E, Liu C et al (2020) Segmentation of the prostatic gland and the intraprostatic lesions on multiparametic magnetic resonance imaging using mask region-based convolutional neural networks. Adv Radiat Oncol 5(3):473–481CrossRefPubMedPubMedCentral Dai Z, Carver E, Liu C et al (2020) Segmentation of the prostatic gland and the intraprostatic lesions on multiparametic magnetic resonance imaging using mask region-based convolutional neural networks. Adv Radiat Oncol 5(3):473–481CrossRefPubMedPubMedCentral
7.
go back to reference da Silva GLF, Diniz PS, Ferreira JL et al (2020) Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput 58(9):1947–1964CrossRefPubMed da Silva GLF, Diniz PS, Ferreira JL et al (2020) Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput 58(9):1947–1964CrossRefPubMed
8.
go back to reference Barentsz JO, Weinreb JC, Verma S et al (2016) Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 69(1):41–49CrossRefPubMed Barentsz JO, Weinreb JC, Verma S et al (2016) Synopsis of the PI-RADS v2 guidelines for multiparametric prostate magnetic resonance imaging and recommendations for use. Eur Urol 69(1):41–49CrossRefPubMed
9.
go back to reference Hötker AM, Mazaheri Y, Aras Ö (2016) Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. AJR Am J Roentgenol 206(4):756–763CrossRefPubMedPubMedCentral Hötker AM, Mazaheri Y, Aras Ö (2016) Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. AJR Am J Roentgenol 206(4):756–763CrossRefPubMedPubMedCentral
10.
go back to reference Sanz-Requena R, Martí-Bonmatí L, Pérez-Martínez R, García-Martí G (2016) Dynamic contrast-enhanced case-control analysis in 3T MRI of prostate cancer can help to characterize tumor aggressiveness. Eur J Radiol 85(11):2119–2126CrossRefPubMed Sanz-Requena R, Martí-Bonmatí L, Pérez-Martínez R, García-Martí G (2016) Dynamic contrast-enhanced case-control analysis in 3T MRI of prostate cancer can help to characterize tumor aggressiveness. Eur J Radiol 85(11):2119–2126CrossRefPubMed
11.
go back to reference Gillespie D, Kendrick C, Boon I (2020) Deep learning in magnetic resonance prostate segmentation: a review and a new perspective. ArXiv: 2011.07795 Gillespie D, Kendrick C, Boon I (2020) Deep learning in magnetic resonance prostate segmentation: a review and a new perspective. ArXiv: 2011.07795
12.
go back to reference Bardis M, Houshyar R, Chantaduly C (2021) Segmentation of the prostate transition zone and peripheral zone on MR images with deep learning. Radiol Imaging Cancer 3(3) Bardis M, Houshyar R, Chantaduly C (2021) Segmentation of the prostate transition zone and peripheral zone on MR images with deep learning. Radiol Imaging Cancer 3(3)
13.
go back to reference Cheng R, Lay N, Roth HR (2019) Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections. J Med Imaging (Bellingham) 6(2):024007PubMed Cheng R, Lay N, Roth HR (2019) Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections. J Med Imaging (Bellingham) 6(2):024007PubMed
14.
go back to reference Litjens G, Toth R, van de Ven W et al (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373CrossRefPubMed Litjens G, Toth R, van de Ven W et al (2014) Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 18(2):359–373CrossRefPubMed
15.
go back to reference Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMed
16.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net convolutional networks for biomedical image segmentation. ArXiv: 1505.04597v1 Ronneberger O, Fischer P, Brox T (2015) U-Net convolutional networks for biomedical image segmentation. ArXiv: 1505.04597v1
17.
go back to reference Bo QZ, Turkbey B, Choyke PL (2017) Deeply-supervised CNN for prostate segmentation. ArXiv: 1703.07523 Bo QZ, Turkbey B, Choyke PL (2017) Deeply-supervised CNN for prostate segmentation. ArXiv: 1703.07523
18.
go back to reference Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. ArXiv: 1412.6980 Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. ArXiv: 1412.6980
19.
go back to reference Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. ArXiv: 1712.04621 Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning. ArXiv: 1712.04621
20.
go back to reference Smith LN (2017) Cyclical learning rates for training neural networks. ArXiv: 1506.01186 Smith LN (2017) Cyclical learning rates for training neural networks. ArXiv: 1506.01186
21.
go back to reference Srisha R, Khan A (2013) Morphological operations for image processing: understanding and its applications. Conference: National Conference on VLSI, Signal processing & Communications Srisha R, Khan A (2013) Morphological operations for image processing: understanding and its applications. Conference: National Conference on VLSI, Signal processing & Communications
22.
go back to reference Kim DW, Jang HY, Kim KW (2019) Deep learning in magnetic resonance prostate segmentation: a review and a new perspective. Korean J Radiol 20(3):405–410CrossRefPubMedPubMedCentral Kim DW, Jang HY, Kim KW (2019) Deep learning in magnetic resonance prostate segmentation: a review and a new perspective. Korean J Radiol 20(3):405–410CrossRefPubMedPubMedCentral
23.
go back to reference Shahedi M, Cool DW, Romagnoli C et al (2014) Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods. Med Phys 41(11):113503CrossRefPubMed Shahedi M, Cool DW, Romagnoli C et al (2014) Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods. Med Phys 41(11):113503CrossRefPubMed
24.
go back to reference Brembilla G, Dell’Oglio P, Stabile A et al (2020) Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1. Eur Radiol 30(6):3383–3392 Brembilla G, Dell’Oglio P, Stabile A et al (2020) Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1. Eur Radiol 30(6):3383–3392
25.
go back to reference Zavala-Romero O, Breto AL, Xu IR et al (2020) Segmentation of prostate and prostate zones using deep learning: A multi-MRI vendor analysis. Strahlenther Onkol 196(10):932–942CrossRefPubMedPubMedCentral Zavala-Romero O, Breto AL, Xu IR et al (2020) Segmentation of prostate and prostate zones using deep learning: A multi-MRI vendor analysis. Strahlenther Onkol 196(10):932–942CrossRefPubMedPubMedCentral
26.
go back to reference Lee DK, Sung DJ, Kim CS et al (2020) Three-dimensional convolutional neural network for prostate MRI segmentation and comparison of prostate volume measurements by use of artificial neural network and ellipsoid formula. AJR Am J Roentgenol 214(6):1229–1238CrossRefPubMed Lee DK, Sung DJ, Kim CS et al (2020) Three-dimensional convolutional neural network for prostate MRI segmentation and comparison of prostate volume measurements by use of artificial neural network and ellipsoid formula. AJR Am J Roentgenol 214(6):1229–1238CrossRefPubMed
27.
go back to reference Khan Z, Yahya N, Alsaih K, Ali SSA, Meriaudeau F (2020) Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI. Sensors (Basel) 20(11):3183CrossRefPubMed Khan Z, Yahya N, Alsaih K, Ali SSA, Meriaudeau F (2020) Evaluation of deep neural networks for semantic segmentation of prostate in T2W MRI. Sensors (Basel) 20(11):3183CrossRefPubMed
Metadata
Title
Automated prostate multi-regional segmentation in magnetic resonance using fully convolutional neural networks
Authors
Ana Jimenez-Pastor
Rafael Lopez-Gonzalez
Belén Fos-Guarinos
Fabio Garcia-Castro
Mark Wittenberg
Asunción Torregrosa-Andrés
Luis Marti-Bonmati
Margarita Garcia-Fontes
Pablo Duarte
Juan Pablo Gambini
Leonardo Kayat Bittencourt
Felipe Campos Kitamura
Vasantha Kumar Venugopal
Vidur Mahajan
Pablo Ros
Emilio Soria-Olivas
Angel Alberich-Bayarri
Publication date
24-01-2023
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 7/2023
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-023-09410-9

Other articles of this Issue 7/2023

European Radiology 7/2023 Go to the issue