Skip to main content
Top
Published in: BMC Geriatrics 1/2022

Open Access 01-12-2022 | Magnetic Resonance Imaging | Research

A pilot voxel-based morphometry study of older adults after the PICMOR intervention program

Authors: Hikaru Sugimoto, Mihoko Otake-Matsuura

Published in: BMC Geriatrics | Issue 1/2022

Login to get access

Abstract

Background

Age-related decline in cognitive function, such as executive function, is associated with structural changes in the neural substrates, such as volume reductions in the lateral prefrontal cortex. To prevent or delay age-related changes in cognitive function, cognitive intervention methods that employ social activity, including conversations, have been proposed in some intervention studies. Interestingly, previous studies have consistently reported that verbal fluency ability can be trained by conversation-based interventions in healthy older adults. However, little is known about the neural substrates that underlie the beneficial effect of conversation-based interventions on cognitive function. In this pilot study, we aimed to provide candidate brain regions that are responsible for the enhancement of cognitive function, by analyzing structural magnetic resonance imaging (MRI) data that were additionally obtained from participants in our previous intervention study.

Methods

A voxel-based morphometric analysis was applied to the structural MRI data. In the analysis, the regional brain volume was compared between the intervention group, who participated in a group conversation-based intervention program named Photo-Integrated Conversation Moderated by Robots (PICMOR), and the control group, who joined in a control program based on unstructured free conversations. Furthermore, regions whose volume was positively correlated with an increase in verbal fluency task scores throughout the intervention period were explored.

Results

Results showed that the volume of several regions, including the superior frontal gyrus, parahippocampal gyrus/hippocampus, posterior middle temporal gyrus, and postcentral gyrus, was greater in the intervention group than in the control group. In contrast, no regions showed greater volume in the control group than in the intervention group. The region whose volume showed a positive correlation with the increased task scores was identified in the inferior parietal lobule.

Conclusions

Although definitive conclusions cannot be drawn from this study due to a lack of MRI data from the pre-intervention period, it achieved the exploratory purpose by successfully identifying candidate brain regions that reflect the beneficial effect of conversation-based interventions on cognitive function, including the lateral prefrontal cortex, which plays an important role in executive functions.

Trial registration

The trial was retrospectively registered on 7 May 2019 (UMIN Clinical Trials Registry number: UMIN000036667).
Appendix
Available only for authorised users
Literature
3.
go back to reference Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299–320.PubMedCrossRef Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299–320.PubMedCrossRef
4.
7.
go back to reference Antonenko D, Floel A. Healthy aging by staying selectively connected: a mini-review. Gerontology. 2014;60(1):3–9.PubMedCrossRef Antonenko D, Floel A. Healthy aging by staying selectively connected: a mini-review. Gerontology. 2014;60(1):3–9.PubMedCrossRef
8.
go back to reference Goh JO, Park DC. Neuroplasticity and cognitive aging: the scaffolding theory of aging and cognition. Restor Neurol Neurosci. 2009;27(5):391–403.PubMedPubMedCentral Goh JO, Park DC. Neuroplasticity and cognitive aging: the scaffolding theory of aging and cognition. Restor Neurol Neurosci. 2009;27(5):391–403.PubMedPubMedCentral
10.
go back to reference Greenwood PM. Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology. 2007;21(6):657–73.PubMedCrossRef Greenwood PM. Functional plasticity in cognitive aging: review and hypothesis. Neuropsychology. 2007;21(6):657–73.PubMedCrossRef
11.
go back to reference Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87–96.PubMedCrossRef Hedden T, Gabrieli JD. Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87–96.PubMedCrossRef
12.
go back to reference Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012;16(5):292–305.PubMedCrossRef Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012;16(5):292–305.PubMedCrossRef
14.
go back to reference Reuter-Lorenz PA, Park DC. Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci. 2010;65(4):405–15.PubMedCrossRef Reuter-Lorenz PA, Park DC. Human neuroscience and the aging mind: a new look at old problems. J Gerontol B Psychol Sci Soc Sci. 2010;65(4):405–15.PubMedCrossRef
16.
go back to reference Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging. 2012;33(3):617 e1–9.CrossRef Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, et al. Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging. 2012;33(3):617 e1–9.CrossRef
17.
go back to reference Manard M, Bahri MA, Salmon E, Collette F. Relationship between grey matter integrity and executive abilities in aging. Brain Res. 2016;1642:562–80.PubMedCrossRef Manard M, Bahri MA, Salmon E, Collette F. Relationship between grey matter integrity and executive abilities in aging. Brain Res. 2016;1642:562–80.PubMedCrossRef
18.
go back to reference Nyberg L, Salami A, Andersson M, Eriksson J, Kalpouzos G, Kauppi K, et al. Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci U S A. 2010;107(52):22682–6.PubMedPubMedCentralCrossRef Nyberg L, Salami A, Andersson M, Eriksson J, Kalpouzos G, Kauppi K, et al. Longitudinal evidence for diminished frontal cortex function in aging. Proc Natl Acad Sci U S A. 2010;107(52):22682–6.PubMedPubMedCentralCrossRef
19.
go back to reference Ramanoel S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, et al. Gray matter volume and cognitive performance during normal aging. A voxel-based morphometry study. Front Aging Neurosci. 2018;10:235.PubMedPubMedCentralCrossRef Ramanoel S, Hoyau E, Kauffmann L, Renard F, Pichat C, Boudiaf N, et al. Gray matter volume and cognitive performance during normal aging. A voxel-based morphometry study. Front Aging Neurosci. 2018;10:235.PubMedPubMedCentralCrossRef
20.
go back to reference Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–89.PubMedCrossRef Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–89.PubMedCrossRef
21.
go back to reference Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex. 2004;14(9):966–73.PubMedCrossRef Tisserand DJ, van Boxtel MP, Pruessner JC, Hofman P, Evans AC, Jolles J. A voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb Cortex. 2004;14(9):966–73.PubMedCrossRef
22.
go back to reference Kelly ME, Duff H, Kelly S, McHugh Power JE, Brennan S, Lawlor BA, et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst Rev. 2017;6(1):259.PubMedPubMedCentralCrossRef Kelly ME, Duff H, Kelly S, McHugh Power JE, Brennan S, Lawlor BA, et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst Rev. 2017;6(1):259.PubMedPubMedCentralCrossRef
23.
go back to reference Shao Z, Janse E, Visser K, Meyer AS. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front Psychol. 2014;5:772.PubMedPubMedCentralCrossRef Shao Z, Janse E, Visser K, Meyer AS. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front Psychol. 2014;5:772.PubMedPubMedCentralCrossRef
24.
go back to reference Dodge HH, Zhu J, Mattek N, Bowman M, Ybarra O, Wild K, et al. Web-enabled conversational interactions as a means to improve cognitive functions: results of a 6-week randomized controlled trial. Alzheimers Dement (N Y). 2015;1(1):1–12.CrossRef Dodge HH, Zhu J, Mattek N, Bowman M, Ybarra O, Wild K, et al. Web-enabled conversational interactions as a means to improve cognitive functions: results of a 6-week randomized controlled trial. Alzheimers Dement (N Y). 2015;1(1):1–12.CrossRef
25.
go back to reference Otake-Matsuura M, Tokunaga S, Watanabe K, Abe MS, Sekiguchi T, Sugimoto H, et al. Cognitive intervention through Photo-Integrated Conversation Moderated by Robots (PICMOR) program: a randomized controlled trial. Front Robot AI. 2021;8:633076.PubMedPubMedCentralCrossRef Otake-Matsuura M, Tokunaga S, Watanabe K, Abe MS, Sekiguchi T, Sugimoto H, et al. Cognitive intervention through Photo-Integrated Conversation Moderated by Robots (PICMOR) program: a randomized controlled trial. Front Robot AI. 2021;8:633076.PubMedPubMedCentralCrossRef
26.
go back to reference Fujiwara Y, Suzuki H, Yasunaga M, Sugiyama M, Ijuin M, Sakuma N, et al. Brief screening tool for mild cognitive impairment in older Japanese: validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr Gerontol Int. 2010;10(3):225–32.PubMedCrossRef Fujiwara Y, Suzuki H, Yasunaga M, Sugiyama M, Ijuin M, Sakuma N, et al. Brief screening tool for mild cognitive impairment in older Japanese: validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr Gerontol Int. 2010;10(3):225–32.PubMedCrossRef
27.
go back to reference Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. New York: Oxford University Press; 2012. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. New York: Oxford University Press; 2012.
28.
go back to reference Miro-Padilla A, Bueicheku E, Ventura-Campos N, Palomar-Garcia MA, Avila C. Functional connectivity in resting state as a phonemic fluency ability measure. Neuropsychologia. 2017;97:98–103.PubMedCrossRef Miro-Padilla A, Bueicheku E, Ventura-Campos N, Palomar-Garcia MA, Avila C. Functional connectivity in resting state as a phonemic fluency ability measure. Neuropsychologia. 2017;97:98–103.PubMedCrossRef
29.
go back to reference Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.PubMedPubMedCentralCrossRef Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.PubMedPubMedCentralCrossRef
30.
go back to reference Sugimoto H, Kawagoe T, Otake-Matsuura M. Characteristics of resting-state functional connectivity in older adults after the PICMOR intervention program: a preliminary report. BMC Geriatr. 2020;20(1):486.PubMedPubMedCentralCrossRef Sugimoto H, Kawagoe T, Otake-Matsuura M. Characteristics of resting-state functional connectivity in older adults after the PICMOR intervention program: a preliminary report. BMC Geriatr. 2020;20(1):486.PubMedPubMedCentralCrossRef
31.
go back to reference Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006;16(1):17–42.PubMedCrossRef Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006;16(1):17–42.PubMedCrossRef
32.
go back to reference Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26(3):916–25.PubMedPubMedCentralCrossRef Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26(3):916–25.PubMedPubMedCentralCrossRef
33.
go back to reference Buchsbaum BR, Greer S, Chang WL, Berman KF. Meta-analysis of neuroimaging studies of the Wisconsin Card-Sorting task and component processes. Hum Brain Mapp. 2005;25(1):35–45.PubMedPubMedCentralCrossRef Buchsbaum BR, Greer S, Chang WL, Berman KF. Meta-analysis of neuroimaging studies of the Wisconsin Card-Sorting task and component processes. Hum Brain Mapp. 2005;25(1):35–45.PubMedPubMedCentralCrossRef
34.
go back to reference Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89.PubMedCrossRef Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89.PubMedCrossRef
35.
go back to reference Laird AR, McMillan KM, Lancaster JL, Kochunov P, Turkeltaub PE, Pardo JV, et al. A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp. 2005;25(1):6–21.PubMedPubMedCentralCrossRef Laird AR, McMillan KM, Lancaster JL, Kochunov P, Turkeltaub PE, Pardo JV, et al. A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp. 2005;25(1):6–21.PubMedPubMedCentralCrossRef
36.
go back to reference Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59.PubMedPubMedCentralCrossRef Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59.PubMedPubMedCentralCrossRef
37.
go back to reference Steele VR, Aharoni E, Munro GE, Calhoun VD, Nyalakanti P, Stevens MC, et al. A large scale (N=102) functional neuroimaging study of response inhibition in a Go/NoGo task. Behav Brain Res. 2013;256:529–36.PubMedPubMedCentralCrossRef Steele VR, Aharoni E, Munro GE, Calhoun VD, Nyalakanti P, Stevens MC, et al. A large scale (N=102) functional neuroimaging study of response inhibition in a Go/NoGo task. Behav Brain Res. 2013;256:529–36.PubMedPubMedCentralCrossRef
38.
go back to reference Varjacic A, Mantini D, Demeyere N, Gillebert CR. Neural signatures of Trail Making Test performance: evidence from lesion-mapping and neuroimaging studies. Neuropsychologia. 2018;115:78–87.PubMedPubMedCentralCrossRef Varjacic A, Mantini D, Demeyere N, Gillebert CR. Neural signatures of Trail Making Test performance: evidence from lesion-mapping and neuroimaging studies. Neuropsychologia. 2018;115:78–87.PubMedPubMedCentralCrossRef
39.
go back to reference Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014;42:180–92.PubMedCrossRef Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014;42:180–92.PubMedCrossRef
40.
go back to reference West GL, Zendel BR, Konishi K, Benady-Chorney J, Bohbot VD, Peretz I, et al. Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS One. 2017;12(12):e0187779.PubMedPubMedCentralCrossRef West GL, Zendel BR, Konishi K, Benady-Chorney J, Bohbot VD, Peretz I, et al. Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS One. 2017;12(12):e0187779.PubMedPubMedCentralCrossRef
41.
go back to reference Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11(6 Pt 1):805–21.PubMedCrossRef Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11(6 Pt 1):805–21.PubMedCrossRef
42.
go back to reference Sugishita M, Koshizuka Y, Sudou S, Sugishita K, Hemmi I, Karasawa H, et al. The validity and reliability of the Japanese version of the Mini-Mental State Examination (MMSE-J) with the original procedure of the Attention and Calculation Task (2001). Japan J Cogn Neurosci. 2018;20(2):91–110. Sugishita M, Koshizuka Y, Sudou S, Sugishita K, Hemmi I, Karasawa H, et al. The validity and reliability of the Japanese version of the Mini-Mental State Examination (MMSE-J) with the original procedure of the Attention and Calculation Task (2001). Japan J Cogn Neurosci. 2018;20(2):91–110.
44.
45.
go back to reference Ridgway GR, Omar R, Ourselin S, Hill DL, Warren JD, Fox NC. Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage. 2009;44(1):99–111.PubMedCrossRef Ridgway GR, Omar R, Ourselin S, Hill DL, Warren JD, Fox NC. Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage. 2009;44(1):99–111.PubMedCrossRef
46.
go back to reference Slotnick SD. Cluster success: fMRI inferences for spatial extent have acceptable false-positive rates. Cogn Neurosci. 2017;8(3):150–5.PubMedCrossRef Slotnick SD. Cluster success: fMRI inferences for spatial extent have acceptable false-positive rates. Cogn Neurosci. 2017;8(3):150–5.PubMedCrossRef
47.
go back to reference Eickhoff SB, Heim S, Zilles K, Amunts K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage. 2006;32(2):570–82.PubMedCrossRef Eickhoff SB, Heim S, Zilles K, Amunts K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage. 2006;32(2):570–82.PubMedCrossRef
48.
go back to reference Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage. 2007;36(3):511–21.PubMedCrossRef Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage. 2007;36(3):511–21.PubMedCrossRef
49.
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25(4):1325–35.PubMedCrossRef Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25(4):1325–35.PubMedCrossRef
50.
go back to reference Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, et al. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain. 2002;125(Pt 5):1024–38.PubMedCrossRef Gurd JM, Amunts K, Weiss PH, Zafiris O, Zilles K, Marshall JC, et al. Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain. 2002;125(Pt 5):1024–38.PubMedCrossRef
51.
go back to reference Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44(12):2547–57.PubMedCrossRef Hirshorn EA, Thompson-Schill SL. Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia. 2006;44(12):2547–57.PubMedCrossRef
52.
go back to reference Scheuringer A, Harris TA, Pletzer B. Recruiting the right hemisphere: sex differences in inter-hemispheric communication during semantic verbal fluency. Brain Lang. 2020;207:104814.PubMedPubMedCentralCrossRef Scheuringer A, Harris TA, Pletzer B. Recruiting the right hemisphere: sex differences in inter-hemispheric communication during semantic verbal fluency. Brain Lang. 2020;207:104814.PubMedPubMedCentralCrossRef
53.
go back to reference Troyer AK, Moscovitch M, Winocur G. Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology. 1997;11(1):138–46.PubMedCrossRef Troyer AK, Moscovitch M, Winocur G. Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology. 1997;11(1):138–46.PubMedCrossRef
54.
go back to reference Engvig A, Fjell AM, Westlye LT, Skaane NV, Dale AM, Holland D, et al. Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. J Alzheimers Dis. 2014;41(3):779–91.PubMedCrossRef Engvig A, Fjell AM, Westlye LT, Skaane NV, Dale AM, Holland D, et al. Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. J Alzheimers Dis. 2014;41(3):779–91.PubMedCrossRef
55.
go back to reference Lovden M, Schaefer S, Noack H, Bodammer NC, Kuhn S, Heinze HJ, et al. Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging. 2012;33(3):620 e9–22.CrossRef Lovden M, Schaefer S, Noack H, Bodammer NC, Kuhn S, Heinze HJ, et al. Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging. 2012;33(3):620 e9–22.CrossRef
56.
go back to reference Davachi L. Item, context and relational episodic encoding in humans. Curr Opin Neurobiol. 2006;16(6):693–700.PubMedCrossRef Davachi L. Item, context and relational episodic encoding in humans. Curr Opin Neurobiol. 2006;16(6):693–700.PubMedCrossRef
57.
go back to reference Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci. 2007;11(9):379–86.PubMedCrossRef Diana RA, Yonelinas AP, Ranganath C. Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci. 2007;11(9):379–86.PubMedCrossRef
58.
go back to reference Eichenbaum H, Sauvage M, Fortin N, Komorowski R, Lipton P. Towards a functional organization of episodic memory in the medial temporal lobe. Neurosci Biobehav Rev. 2012;36(7):1597–608.PubMedCrossRef Eichenbaum H, Sauvage M, Fortin N, Komorowski R, Lipton P. Towards a functional organization of episodic memory in the medial temporal lobe. Neurosci Biobehav Rev. 2012;36(7):1597–608.PubMedCrossRef
59.
go back to reference Rugg MD, Vilberg KL, Mattson JT, Yu SS, Johnson JD, Suzuki M. Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia. 2012;50(13):3070–9.PubMedPubMedCentralCrossRef Rugg MD, Vilberg KL, Mattson JT, Yu SS, Johnson JD, Suzuki M. Item memory, context memory and the hippocampus: fMRI evidence. Neuropsychologia. 2012;50(13):3070–9.PubMedPubMedCentralCrossRef
60.
go back to reference Wechsler D. WMS-R: Wechsler Memory Scale-Revised Manual. San Antonio: The Psychological Corporation; 1987. Wechsler D. WMS-R: Wechsler Memory Scale-Revised Manual. San Antonio: The Psychological Corporation; 1987.
61.
go back to reference Ardila A, Bernal B, Rosselli M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch Clin Neuropsychol. 2016;31(1):112–22.PubMedCrossRef Ardila A, Bernal B, Rosselli M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch Clin Neuropsychol. 2016;31(1):112–22.PubMedCrossRef
62.
go back to reference Dronkers NF, Wilkins DP, Van Valin RD, Jr., Redfern BB, Jaeger JJ. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92(1–2):145–77.PubMedCrossRef Dronkers NF, Wilkins DP, Van Valin RD, Jr., Redfern BB, Jaeger JJ. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92(1–2):145–77.PubMedCrossRef
63.
go back to reference Kertesz A, Sheppard A, MacKenzie R. Localization in transcortical sensory aphasia. Arch Neurol. 1982;39(8):475–8.PubMedCrossRef Kertesz A, Sheppard A, MacKenzie R. Localization in transcortical sensory aphasia. Arch Neurol. 1982;39(8):475–8.PubMedCrossRef
64.
go back to reference Robson H, Sage K, Ralph MA. Wernicke’s aphasia reflects a combination of acoustic-phonological and semantic control deficits: a case-series comparison of Wernicke’s aphasia, semantic dementia and semantic aphasia. Neuropsychologia. 2012;50(2):266–75.PubMedCrossRef Robson H, Sage K, Ralph MA. Wernicke’s aphasia reflects a combination of acoustic-phonological and semantic control deficits: a case-series comparison of Wernicke’s aphasia, semantic dementia and semantic aphasia. Neuropsychologia. 2012;50(2):266–75.PubMedCrossRef
65.
go back to reference Kemmerer D. Cognitive neuroscience of language. New York: Psychology Press; 2015. Kemmerer D. Cognitive neuroscience of language. New York: Psychology Press; 2015.
66.
go back to reference Hickok G, Poeppel D. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci. 2000;4(4):131–8.PubMedCrossRef Hickok G, Poeppel D. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci. 2000;4(4):131–8.PubMedCrossRef
67.
go back to reference Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67–99.PubMedCrossRef Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67–99.PubMedCrossRef
68.
go back to reference Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.PubMedCrossRef Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.PubMedCrossRef
69.
go back to reference Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–31.PubMedPubMedCentralCrossRef Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–31.PubMedPubMedCentralCrossRef
70.
go back to reference Gorbach T, Pudas S, Lundquist A, Oradd G, Josefsson M, Salami A, et al. Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiol Aging. 2017;51:167–76.PubMedCrossRef Gorbach T, Pudas S, Lundquist A, Oradd G, Josefsson M, Salami A, et al. Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiol Aging. 2017;51:167–76.PubMedCrossRef
71.
go back to reference Leong RLF, Lo JC, Sim SKY, Zheng H, Tandi J, Zhou J, et al. Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort. Neuroimage. 2017;147:852–60.PubMedCrossRef Leong RLF, Lo JC, Sim SKY, Zheng H, Tandi J, Zhou J, et al. Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort. Neuroimage. 2017;147:852–60.PubMedCrossRef
72.
go back to reference Sugishita K, Sugishita M, Hemmi I, Asada T, Tanigawa T. A validity and reliability study of the Japanese version of the Geriatric Depression Scale 15 (GDS-15-J). Clin Gerontol. 2017;40(4):233–40.PubMedCrossRef Sugishita K, Sugishita M, Hemmi I, Asada T, Tanigawa T. A validity and reliability study of the Japanese version of the Geriatric Depression Scale 15 (GDS-15-J). Clin Gerontol. 2017;40(4):233–40.PubMedCrossRef
73.
go back to reference Tokunaga S, Tamura K, Otake-Matsuura M. A dialogue-based system with photo and storytelling for older adults: toward daily cognitive training. Front Robot AI. 2021;8:644964.PubMedPubMedCentralCrossRef Tokunaga S, Tamura K, Otake-Matsuura M. A dialogue-based system with photo and storytelling for older adults: toward daily cognitive training. Front Robot AI. 2021;8:644964.PubMedPubMedCentralCrossRef
Metadata
Title
A pilot voxel-based morphometry study of older adults after the PICMOR intervention program
Authors
Hikaru Sugimoto
Mihoko Otake-Matsuura
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2022
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-021-02669-x

Other articles of this Issue 1/2022

BMC Geriatrics 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine