Skip to main content
Top
Published in: European Radiology 2/2016

01-02-2016 | Breast

Magnetic resonance imaging texture analysis classification of primary breast cancer

Authors: S. A. Waugh, C. A. Purdie, L. B. Jordan, S. Vinnicombe, R. A. Lerski, P. Martin, A. M. Thompson

Published in: European Radiology | Issue 2/2016

Login to get access

Abstract

Objectives

Patient-tailored treatments for breast cancer are based on histological and immunohistochemical (IHC) subtypes. Magnetic Resonance Imaging (MRI) texture analysis (TA) may be useful in non-invasive lesion subtype classification.

Methods

Women with newly diagnosed primary breast cancer underwent pre-treatment dynamic contrast-enhanced breast MRI. TA was performed using co-occurrence matrix (COM) features, by creating a model on retrospective training data, then prospectively applying to a test set. Analyses were blinded to breast pathology. Subtype classifications were performed using a cross-validated k-nearest-neighbour (k = 3) technique, with accuracy relative to pathology assessed and receiver operator curve (AUROC) calculated. Mann-Whitney U and Kruskal-Wallis tests were used to assess raw entropy feature values.

Results

Histological subtype classifications were similar across training (n = 148 cancers) and test sets (n = 73 lesions) using all COM features (training: 75 %, AUROC = 0.816; test: 72.5 %, AUROC = 0.823). Entropy features were significantly different between lobular and ductal cancers (p < 0.001; Mann-Whitney U). IHC classifications using COM features were also similar for training and test data (training: 57.2 %, AUROC = 0.754; test: 57.0 %, AUROC = 0.750). Hormone receptor positive and negative cancers demonstrated significantly different entropy features. Entropy features alone were unable to create a robust classification model.

Conclusion

Textural differences on contrast-enhanced MR images may reflect underlying lesion subtypes, which merits testing against treatment response.

Key Points

MR-derived entropy features, representing heterogeneity, provide important information on tissue composition.
Entropy features can differentiate between histological and immunohistochemical subtypes of breast cancer.
Differing entropy features between breast cancer subtypes implies differences in lesion heterogeneity.
Texture analysis of breast cancer potentially provides added information for decision making.
Literature
1.
go back to reference Moy L, Elias K, Patel V et al (2009) Is breast MRI helpful in the evaluation of inconclusive mammographic findings. Am J Roentgenol 193:986–993CrossRef Moy L, Elias K, Patel V et al (2009) Is breast MRI helpful in the evaluation of inconclusive mammographic findings. Am J Roentgenol 193:986–993CrossRef
2.
go back to reference Vassiou K, Kanavou T, Vlychou M et al (2009) Characterization of breast lesions with CE-MR multimodal morphological and kinetic analysis: comparison with conventional mammography and high-resolution ultrasound. Eur J Radiol 70:69–76PubMedCrossRef Vassiou K, Kanavou T, Vlychou M et al (2009) Characterization of breast lesions with CE-MR multimodal morphological and kinetic analysis: comparison with conventional mammography and high-resolution ultrasound. Eur J Radiol 70:69–76PubMedCrossRef
3.
go back to reference Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492PubMedCrossRef Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492PubMedCrossRef
4.
go back to reference Menell JH, Morris EA, Dershaw DD, Brogi E, Liberman L (2005) Determination of the presence and extent of pure ductal carcinoma in situ by mammography and magnetic resonance imaging. Breast 11:382–390CrossRef Menell JH, Morris EA, Dershaw DD, Brogi E, Liberman L (2005) Determination of the presence and extent of pure ductal carcinoma in situ by mammography and magnetic resonance imaging. Breast 11:382–390CrossRef
5.
go back to reference Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069PubMedCrossRef Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069PubMedCrossRef
6.
go back to reference Lerski RA, Straughan K, Schad LR, Boyce D, Bluml S, Zuna I (1993) MR image texture analysis—an approach to tissue characterisation. Magn Reson Imaging 11:873–887PubMedCrossRef Lerski RA, Straughan K, Schad LR, Boyce D, Bluml S, Zuna I (1993) MR image texture analysis—an approach to tissue characterisation. Magn Reson Imaging 11:873–887PubMedCrossRef
7.
go back to reference Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320PubMedCrossRef Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320PubMedCrossRef
8.
go back to reference Kjaer L, Ring P, Thomsen C, Henriksen O (1995) Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5T. Acta Radiol 36:127–135PubMed Kjaer L, Ring P, Thomsen C, Henriksen O (1995) Texture analysis in quantitative MR imaging. Tissue characterisation of normal brain and intracranial tumours at 1.5T. Acta Radiol 36:127–135PubMed
9.
go back to reference Nedelec J-F, Yu O, Chambron J, Macher J-P (2004) Texture analysis of the brain: from animal models to human applications. Dialogues Clin Neurosci 6:227–233PubMedPubMedCentral Nedelec J-F, Yu O, Chambron J, Macher J-P (2004) Texture analysis of the brain: from animal models to human applications. Dialogues Clin Neurosci 6:227–233PubMedPubMedCentral
10.
go back to reference Yu O, Mauss Y, Namer IJ, Chambron J (2001) Existence of contralateral abnormalities revealed by texture analysis in unilateral intractable hippocampal epilepsy. Magn Reson Imaging 19:1305–1310PubMedCrossRef Yu O, Mauss Y, Namer IJ, Chambron J (2001) Existence of contralateral abnormalities revealed by texture analysis in unilateral intractable hippocampal epilepsy. Magn Reson Imaging 19:1305–1310PubMedCrossRef
11.
go back to reference Jirak D, Dezortova M, Taimr P, Hajek M (2002) Texture analysis of human liver. J Magn Reson Imaging 15:68–74PubMedCrossRef Jirak D, Dezortova M, Taimr P, Hajek M (2002) Texture analysis of human liver. J Magn Reson Imaging 15:68–74PubMedCrossRef
12.
go back to reference Gibbs P, Turnbull LW (2003) Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 50:92–98PubMedCrossRef Gibbs P, Turnbull LW (2003) Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 50:92–98PubMedCrossRef
13.
go back to reference Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast enhanced magnetic resonance images. Magn Reson Med 58:562–571PubMedCrossRef Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast enhanced magnetic resonance images. Magn Reson Med 58:562–571PubMedCrossRef
14.
go back to reference Sinha S, Lucas-Quesada FA, DeBruhl ND et al (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026PubMedCrossRef Sinha S, Lucas-Quesada FA, DeBruhl ND et al (1997) Multifeature analysis of Gd-enhanced MR images of breast lesions. J Magn Reson Imaging 7:1016–1026PubMedCrossRef
15.
go back to reference Holli K, Laaperi AL, Harrison L et al (2010) Characterisation of breast cancer types by texture analysis of magnetic reonance images. Acad Radiol 17:135–141PubMedCrossRef Holli K, Laaperi AL, Harrison L et al (2010) Characterisation of breast cancer types by texture analysis of magnetic reonance images. Acad Radiol 17:135–141PubMedCrossRef
16.
go back to reference Tavassoli FA, Devilee P (eds) (2003) World Health Organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon Tavassoli FA, Devilee P (eds) (2003) World Health Organization classification of tumours. Pathology and genetics of tumours of the breast and female genital organs. IARC Press, Lyon
17.
go back to reference Goldhirsch A, Ingle JN, Gelber RD et al (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2009. Ann Oncol 20:1319–1329PubMedPubMedCentralCrossRef Goldhirsch A, Ingle JN, Gelber RD et al (2009) Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2009. Ann Oncol 20:1319–1329PubMedPubMedCentralCrossRef
18.
go back to reference Keller PJ, Lin AF, Arendt LM et al (2010) Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 12:R87PubMedPubMedCentralCrossRef Keller PJ, Lin AF, Arendt LM et al (2010) Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 12:R87PubMedPubMedCentralCrossRef
19.
go back to reference Haupt B, Ro JY, Schwartz MR (2010) Basal-like breast carcinoma. A phenotypically distinct entity. Arch Pathol Lab Med 134:130–133PubMed Haupt B, Ro JY, Schwartz MR (2010) Basal-like breast carcinoma. A phenotypically distinct entity. Arch Pathol Lab Med 134:130–133PubMed
20.
go back to reference Szczpinski PM (2007) Mazda 3D Editor. Version 4.6 ed: Technical University of Lodz, Institute of Electronics: MRI Analysis Software Szczpinski PM (2007) Mazda 3D Editor. Version 4.6 ed: Technical University of Lodz, Institute of Electronics: MRI Analysis Software
21.
go back to reference Szczpinski PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda—a software package for image texture analysis. Comput Methods Prog Biomed 94:66–76CrossRef Szczpinski PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda—a software package for image texture analysis. Comput Methods Prog Biomed 94:66–76CrossRef
22.
go back to reference Szczpinski PM (2010) Personal communication: Software developers teaching visit. Teaching ed. Lodz, Poland Szczpinski PM (2010) Personal communication: Software developers teaching visit. Teaching ed. Lodz, Poland
23.
go back to reference Waugh SA, Lerski RA, Bidaut L, Thompson AM (2011) The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys 38:5058–5066PubMedCrossRef Waugh SA, Lerski RA, Bidaut L, Thompson AM (2011) The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys 38:5058–5066PubMedCrossRef
24.
go back to reference Collewet G, Strzelecki M, Mariette F (2004) Influenece of MRI acquisition protocols and image intensity normalisation methods on texture classification. Magn Reson Imaging 22:81–91PubMedCrossRef Collewet G, Strzelecki M, Mariette F (2004) Influenece of MRI acquisition protocols and image intensity normalisation methods on texture classification. Magn Reson Imaging 22:81–91PubMedCrossRef
25.
go back to reference Strzlecki M, Materka A, Szczypinski P (2006) MaZda. In: Hajek MDM, Materka A, Lerski R (eds) Texture analysis for magnetic resonance imaging. Med4Publishing, Prague, pp 107–113 Strzlecki M, Materka A, Szczypinski P (2006) MaZda. In: Hajek MDM, Materka A, Lerski R (eds) Texture analysis for magnetic resonance imaging. Med4Publishing, Prague, pp 107–113
26.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA Data Mining Software: an update. SIGKDD Explor 11:10–18CrossRef Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA Data Mining Software: an update. SIGKDD Explor 11:10–18CrossRef
27.
go back to reference Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159CrossRef Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30:1145–1159CrossRef
28.
go back to reference Eliat PA, Olivie D, Saikali S, Carsin B, Saint-Jalmes H, de Certaines JD (2012) Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumours from other glioblastoma? Neurol Res Int 2012:Article ID 195176CrossRef Eliat PA, Olivie D, Saikali S, Carsin B, Saint-Jalmes H, de Certaines JD (2012) Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumours from other glioblastoma? Neurol Res Int 2012:Article ID 195176CrossRef
29.
go back to reference Bufi E, Belli P, Di Matteo M et al (2014) Effect of breast cancer phenotype on diagnostic performance of MRI in the prediction of response ot neoadjuvant chemotherapy. Eur J Radiol 83:1631–1638PubMedCrossRef Bufi E, Belli P, Di Matteo M et al (2014) Effect of breast cancer phenotype on diagnostic performance of MRI in the prediction of response ot neoadjuvant chemotherapy. Eur J Radiol 83:1631–1638PubMedCrossRef
30.
go back to reference Skogen K, Ganeshan B, Good T, Critchley G, Miles KA (2011) Imaging hetereogeneity in gliomas using texture analysis. Cancer Imaging 11:S113CrossRef Skogen K, Ganeshan B, Good T, Critchley G, Miles KA (2011) Imaging hetereogeneity in gliomas using texture analysis. Cancer Imaging 11:S113CrossRef
31.
go back to reference Nie K, Chen J-H, Yu HJ, Chu Y, Nalcioglu O, M-Y S (2008) Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol 15:1513–1525PubMedPubMedCentralCrossRef Nie K, Chen J-H, Yu HJ, Chu Y, Nalcioglu O, M-Y S (2008) Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol 15:1513–1525PubMedPubMedCentralCrossRef
33.
go back to reference Win T, Miles KA, Jones AM et al (2013) Tumour heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res 19:3591–3599PubMedCrossRef Win T, Miles KA, Jones AM et al (2013) Tumour heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res 19:3591–3599PubMedCrossRef
34.
go back to reference Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumour heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589PubMedPubMedCentralCrossRef Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumour heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3:573–589PubMedPubMedCentralCrossRef
35.
go back to reference Ganeshan B, Strukowska O, Skogen K, Young R, Chatwin C, Miles K (2011) Heterogeneity of focal breast lesions and surrounding tissue assessed by mammographic texture analysis: preliminary evidence of an associated with tumour invasion and estrogen receptor status. Front Oncol 1:33PubMedPubMedCentralCrossRef Ganeshan B, Strukowska O, Skogen K, Young R, Chatwin C, Miles K (2011) Heterogeneity of focal breast lesions and surrounding tissue assessed by mammographic texture analysis: preliminary evidence of an associated with tumour invasion and estrogen receptor status. Front Oncol 1:33PubMedPubMedCentralCrossRef
36.
go back to reference Herlidou-Meme S, Constans JM, Carsin B et al (2003) MRI texture analysis on texture test objects, normal brain and intracranial tumours. Magn Reson Imaging 21:989–993PubMedCrossRef Herlidou-Meme S, Constans JM, Carsin B et al (2003) MRI texture analysis on texture test objects, normal brain and intracranial tumours. Magn Reson Imaging 21:989–993PubMedCrossRef
37.
go back to reference Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumour type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618PubMedPubMedCentralCrossRef Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumour type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618PubMedPubMedCentralCrossRef
38.
go back to reference Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A, Trattnig S (2009) Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination. Med Phys 36:1236–1243PubMedCrossRef Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A, Trattnig S (2009) Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination. Med Phys 36:1236–1243PubMedCrossRef
39.
go back to reference Jirak D, Dezortova M, Hajek M (2004) Phantoms for texture analysis of MR images. Long term and multi-center study. Med Phys 31:616–622PubMedCrossRef Jirak D, Dezortova M, Hajek M (2004) Phantoms for texture analysis of MR images. Long term and multi-center study. Med Phys 31:616–622PubMedCrossRef
Metadata
Title
Magnetic resonance imaging texture analysis classification of primary breast cancer
Authors
S. A. Waugh
C. A. Purdie
L. B. Jordan
S. Vinnicombe
R. A. Lerski
P. Martin
A. M. Thompson
Publication date
01-02-2016
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 2/2016
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-3845-6

Other articles of this Issue 2/2016

European Radiology 2/2016 Go to the issue