Skip to main content
Top
Published in: Skeletal Radiology 4/2013

01-04-2013 | Scientific Article

Magnetic resonance imaging of ankle tendon pathology: benefits of additional axial short-tau inversion recovery imaging to reduce magic angle effects

Authors: Waraporn Srikhum, Lorenzo Nardo, Dimitrios C. Karampinos, Gerd Melkus, Theresa Poulos, Lynne S. Steinbach, Thomas M. Link

Published in: Skeletal Radiology | Issue 4/2013

Login to get access

Abstract

Objectives

Our goals were to quantify the reduction of the magic angle effect using short-tau inversion recovery (STIR) imaging and to determine the value of adding an axial STIR sequence to the magnetic resonance imaging ankle protocol.

Materials and methods

Axial STIR sequences were used to measure normal tendon T1 and to estimate signal loss due to the inversion recovery preparation of our clinical protocol. In addition, 102 ankles were imaged with axial fat-suppressed intermediate-weighted fast spin echo and STIR sequences. Two radiologists analyzed the tendons for signal intensity, size, abnormalities, and magic angle effect. The diagnostic value and image quality of the two sequences were compared.

Results

We calculated a 50 % reduction of signal intensity in healthy tendons on the STIR sequence at TI = 170 ms compared with TI = 0 ms, explaining the decrease in the magic angle effect. Using the STIR sequence, our study demonstrated significantly lower signal intensity within the tendons, more precise tendon size, and a lower magic angle effect compared with the standard intermediate-weighted FSE sequence (p < 0.001). Diagnostic classification of tendon abnormalities using the STIR sequences showed higher sensitivity (82.35 % vs 75.27 %) and better agreement with a reference standard than the intermediate-weighted sequences, and superior image quality (p < 0.01).

Conclusions

Axial STIR sequences reduce magic angle effects and improve visualization of ankle tendon pathology.
Literature
1.
go back to reference Schweitzer ME, Karasick D. MRI of the ankle and hindfoot. Semin Ultrasound CT MR. 1994;15(5):410–22.PubMedCrossRef Schweitzer ME, Karasick D. MRI of the ankle and hindfoot. Semin Ultrasound CT MR. 1994;15(5):410–22.PubMedCrossRef
2.
go back to reference Cheung Y, Rosenberg ZS, Magee T, Chinitz L. Normal anatomy and pathologic conditions of ankle tendons: current imaging techniques. Radiographics. 1992;12(3):429–44.PubMed Cheung Y, Rosenberg ZS, Magee T, Chinitz L. Normal anatomy and pathologic conditions of ankle tendons: current imaging techniques. Radiographics. 1992;12(3):429–44.PubMed
3.
go back to reference Aerts P, Disler DG. Abnormalities of the foot and ankle: MR imaging findings. AJR Am J Roentgenol. 1995;165(1):119–24.PubMed Aerts P, Disler DG. Abnormalities of the foot and ankle: MR imaging findings. AJR Am J Roentgenol. 1995;165(1):119–24.PubMed
4.
go back to reference Kingston S. Magnetic-resonance imaging of the ankle and foot. Clin Sport Med. 1988;7(1):15–28. Kingston S. Magnetic-resonance imaging of the ankle and foot. Clin Sport Med. 1988;7(1):15–28.
5.
go back to reference Khoury NJ, el-Khoury GY, Saltzman CL, Brandser EA. MR imaging of posterior tibial tendon dysfunction. AJR Am J Roentgenol. 1996;167(3):675–82.PubMed Khoury NJ, el-Khoury GY, Saltzman CL, Brandser EA. MR imaging of posterior tibial tendon dysfunction. AJR Am J Roentgenol. 1996;167(3):675–82.PubMed
6.
go back to reference Rosenberg ZS, Beltran J, Bencardino JT. From the RSNA Refresher Courses. Radiological Society of North America. MR imaging of the ankle and foot. Radiographics. 2000;20:S153–79.PubMed Rosenberg ZS, Beltran J, Bencardino JT. From the RSNA Refresher Courses. Radiological Society of North America. MR imaging of the ankle and foot. Radiographics. 2000;20:S153–79.PubMed
7.
go back to reference Wang XT. Normal variants and diseases of the peroneal tendons and superior peroneal retinaculum: MR imaging features. Radiographics. 2005;25:587–602.PubMedCrossRef Wang XT. Normal variants and diseases of the peroneal tendons and superior peroneal retinaculum: MR imaging features. Radiographics. 2005;25:587–602.PubMedCrossRef
8.
go back to reference Campbell RS, Grainger AJ. Current concepts in imaging of tendinopathy. Clin Radiol. 2001;56(4):253–67.PubMedCrossRef Campbell RS, Grainger AJ. Current concepts in imaging of tendinopathy. Clin Radiol. 2001;56(4):253–67.PubMedCrossRef
9.
go back to reference Mengiardi B, Pfirrmann CWA, Schöttle PB, Bode B, Hodler J, Vienne P, et al. Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic subjects and cadaveric tendons. Eur Radiol. 2006;16(10):2197–206.PubMedCrossRef Mengiardi B, Pfirrmann CWA, Schöttle PB, Bode B, Hodler J, Vienne P, et al. Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic subjects and cadaveric tendons. Eur Radiol. 2006;16(10):2197–206.PubMedCrossRef
10.
go back to reference Schweitzer ME, Caccese R, Karasick D, Wapner KL, Mitchell DG. Posterior tibial tendon tears - utility of secondary signs for Mr-imaging diagnosis. Radiology. 1993;188(3):655–9.PubMed Schweitzer ME, Caccese R, Karasick D, Wapner KL, Mitchell DG. Posterior tibial tendon tears - utility of secondary signs for Mr-imaging diagnosis. Radiology. 1993;188(3):655–9.PubMed
11.
go back to reference Zanetti M. Founder’s lecture of the ISS 2006: borderlands of normal and early pathological findings in MRI of the foot and ankle. Skelet Radiol. 2008;37(10):875–84.CrossRef Zanetti M. Founder’s lecture of the ISS 2006: borderlands of normal and early pathological findings in MRI of the foot and ankle. Skelet Radiol. 2008;37(10):875–84.CrossRef
12.
go back to reference Erickson SJ, Prost RW, Timins ME. The magic-angle effect—background physics and clinical relevance. Radiology. 1993;188(1):23–5.PubMed Erickson SJ, Prost RW, Timins ME. The magic-angle effect—background physics and clinical relevance. Radiology. 1993;188(1):23–5.PubMed
13.
go back to reference Fullerton GD, Rahal A. Collagen structure: the molecular source of the tendon magic angle effect. J Magn Reson Imaging. 2007;25(2):345–61.PubMedCrossRef Fullerton GD, Rahal A. Collagen structure: the molecular source of the tendon magic angle effect. J Magn Reson Imaging. 2007;25(2):345–61.PubMedCrossRef
14.
go back to reference Erickson SJ, Cox IH, Hyde JS, Carrera GF, Strandt JA, Estkowski LD. Effect of tendon orientation on Mr imaging signal intensity—a manifestation of the magic angle phenomenon. Radiology. 1991;181(2):389–92.PubMed Erickson SJ, Cox IH, Hyde JS, Carrera GF, Strandt JA, Estkowski LD. Effect of tendon orientation on Mr imaging signal intensity—a manifestation of the magic angle phenomenon. Radiology. 1991;181(2):389–92.PubMed
15.
go back to reference Peh WCG, Chan JHM. The magic angle phenomenon in tendons: effect of varying the MR echo time. Br J Radiol. 1998;71(841):31–6.PubMed Peh WCG, Chan JHM. The magic angle phenomenon in tendons: effect of varying the MR echo time. Br J Radiol. 1998;71(841):31–6.PubMed
16.
go back to reference Fullerton GD, Cameron IL, Ord VA. Orientation of tendons in the magnetic field and its effect on T2 relaxation times. Radiology. 1985;155(2):433–5.PubMed Fullerton GD, Cameron IL, Ord VA. Orientation of tendons in the magnetic field and its effect on T2 relaxation times. Radiology. 1985;155(2):433–5.PubMed
17.
go back to reference Li T. Manifestation of magic angle phenomenon: comparative study on effects of varying echo time and tendon orientation among various MR sequences. Magn Reson Imaging. 2003;21(7):741–4.PubMedCrossRef Li T. Manifestation of magic angle phenomenon: comparative study on effects of varying echo time and tendon orientation among various MR sequences. Magn Reson Imaging. 2003;21(7):741–4.PubMedCrossRef
18.
go back to reference Bydder M, Rahal A, Fullerton GD, Bydder GM. The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging. 2007;25(2):290–300.PubMedCrossRef Bydder M, Rahal A, Fullerton GD, Bydder GM. The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging. 2007;25(2):290–300.PubMedCrossRef
19.
go back to reference Bydder GM, Young IR. MR imaging—clinical use of the inversion recovery sequence. J Comput Assist Tomogr. 1985;9(4):659–75.PubMedCrossRef Bydder GM, Young IR. MR imaging—clinical use of the inversion recovery sequence. J Comput Assist Tomogr. 1985;9(4):659–75.PubMedCrossRef
20.
go back to reference Bydder GM, Steiner RE, Blumgart LH, Khenia S, Young IR. MR imaging of the liver using short TI inversion recovery sequences. J Comput Assist Tomogr. 1985;9(6):1084–9.PubMedCrossRef Bydder GM, Steiner RE, Blumgart LH, Khenia S, Young IR. MR imaging of the liver using short TI inversion recovery sequences. J Comput Assist Tomogr. 1985;9(6):1084–9.PubMedCrossRef
21.
go back to reference Wright P, Jellus V, McGonagle D, Robson M, Ridgeway J, Hodgson R. Comparison of two ultrashort echo time sequences for the quantification of T(1) within phantom and human Achilles tendon at 3T. Magn Reson Med. 2012;68(4):1279–84.PubMedCrossRef Wright P, Jellus V, McGonagle D, Robson M, Ridgeway J, Hodgson R. Comparison of two ultrashort echo time sequences for the quantification of T(1) within phantom and human Achilles tendon at 3T. Magn Reson Med. 2012;68(4):1279–84.PubMedCrossRef
22.
go back to reference Du J, Pak BC, Znamirowski R, Statum S, Takahashi A, Chung CB, et al. Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis. Magn Reson Imaging. 2009;27(4):557–64.PubMedCrossRef Du J, Pak BC, Znamirowski R, Statum S, Takahashi A, Chung CB, et al. Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis. Magn Reson Imaging. 2009;27(4):557–64.PubMedCrossRef
23.
go back to reference Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0T: relaxation times and image contrast. AJR Am J Roentgenol. 2004;183(2):343–51.PubMed Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0T: relaxation times and image contrast. AJR Am J Roentgenol. 2004;183(2):343–51.PubMed
24.
go back to reference Kingsley PB. Signal intensities and T-1 calculations in multiple-echo sequences with imperfect pulses. Concepts Magn Reson. 1999;11(1):29–49.CrossRef Kingsley PB. Signal intensities and T-1 calculations in multiple-echo sequences with imperfect pulses. Concepts Magn Reson. 1999;11(1):29–49.CrossRef
25.
go back to reference Kijowski R, Farber JM, Medina J, Morrison W, Ying J, Buckwalter K. Comparison of fat-suppressed T2-weighted fast spin-echo sequence and modified STIR sequence in the evaluation of the rotator cuff tendon. AJR Am J Roentgenol. 2005;185(2):371–8.PubMed Kijowski R, Farber JM, Medina J, Morrison W, Ying J, Buckwalter K. Comparison of fat-suppressed T2-weighted fast spin-echo sequence and modified STIR sequence in the evaluation of the rotator cuff tendon. AJR Am J Roentgenol. 2005;185(2):371–8.PubMed
26.
go back to reference Rosenberg ZS, Cheung Y, Jahss MH, Noto AM, Norman A, Leeds NE. Rupture of posterior tibial tendon: CT and MR imaging with surgical correlation. Radiology. 1988;169(1):229–35.PubMed Rosenberg ZS, Cheung Y, Jahss MH, Noto AM, Norman A, Leeds NE. Rupture of posterior tibial tendon: CT and MR imaging with surgical correlation. Radiology. 1988;169(1):229–35.PubMed
27.
go back to reference Delfaut EM, Demondion X, Bieganski A, Cotten H, Mestdagh H, Cotten A. The fibrocartilaginous sesamoid: a cause of size and signal variation in the normal distal posterior tibial tendon. Eur Radiol. 2003;13(12):2642–9.PubMedCrossRef Delfaut EM, Demondion X, Bieganski A, Cotten H, Mestdagh H, Cotten A. The fibrocartilaginous sesamoid: a cause of size and signal variation in the normal distal posterior tibial tendon. Eur Radiol. 2003;13(12):2642–9.PubMedCrossRef
28.
go back to reference Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 1999;19(2):373–82.PubMed Delfaut EM, Beltran J, Johnson G, Rousseau J, Marchandise X, Cotten A. Fat suppression in MR imaging: techniques and pitfalls. Radiographics. 1999;19(2):373–82.PubMed
Metadata
Title
Magnetic resonance imaging of ankle tendon pathology: benefits of additional axial short-tau inversion recovery imaging to reduce magic angle effects
Authors
Waraporn Srikhum
Lorenzo Nardo
Dimitrios C. Karampinos
Gerd Melkus
Theresa Poulos
Lynne S. Steinbach
Thomas M. Link
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
Skeletal Radiology / Issue 4/2013
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-012-1550-y

Other articles of this Issue 4/2013

Skeletal Radiology 4/2013 Go to the issue