Skip to main content
Top
Published in: Oral Radiology 1/2018

01-01-2018 | Review Article

Magnetic resonance imaging in endodontics: a literature review

Authors: Yoshiko Ariji, Eiichiro Ariji, Misako Nakashima, Koichiro Iohara

Published in: Oral Radiology | Issue 1/2018

Login to get access

Abstract

Objectives

Magnetic resonance imaging (MRI) has recently been used for the evaluation of dental pulp anatomy, vitality, and regeneration. This study reviewed the recent use of MRI in the endodontic field.

Methods

Literature published from January 2000 to March 2017 was searched in PubMed using the following Medical Subject Heading (MeSH) terms: (1) MRI and (dental pulp anatomy or endodontic pulp); (2) MRI and dental pulp regeneration. Studies were narrowed down based on specific inclusion criteria and categorized as in vitro, in vivo, or dental pulp regeneration studies. The MRI sequences and imaging findings were summarized.

Results

In the in vitro studies on dental pulp anatomy, T1-weighted imaging with high resolution was frequently used to evaluate dental pulp morphology, demineralization depth, and tooth abnormalities. Other sequences such as apparent diffusion coefficient mapping and sweep imaging with Fourier transformation were used to evaluate pulpal fluid and decayed teeth, and short-T2 tissues (dentin and enamel), respectively. In the in vivo studies, pulp vitality and reperfusion were visible with fat-saturated T2-weighted imaging or contrast-enhanced T1-weighted imaging. In both the in vitro and in vivo studies, MRI could reveal pulp regeneration after stem cell therapy. Stem cells labeled with superparamagnetic iron oxide particles were also visible on MRI. Angiogenesis induced by stem cells could be confirmed on enhanced T1-weighted imaging.

Conclusion

MRI can be successfully used to visualize pulp morphology as well as pulp vitality and regeneration. The use of MRI in the endodontic field is likely to increase in the future.
Literature
1.
go back to reference Rajasekharan S, Martens L, Vanhove C, Aps J. In vitro analysis of extracted dens invaginatus using various radiographic imaging techniques. Eur J Paediatr Dent. 2014;15:265–70.PubMed Rajasekharan S, Martens L, Vanhove C, Aps J. In vitro analysis of extracted dens invaginatus using various radiographic imaging techniques. Eur J Paediatr Dent. 2014;15:265–70.PubMed
2.
go back to reference Flügge T, Hövener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, et al. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. Eur Radiol. 2016;26:4616–23.CrossRefPubMedPubMedCentral Flügge T, Hövener JB, Ludwig U, Eisenbeiss AK, Spittau B, Hennig J, et al. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences. Eur Radiol. 2016;26:4616–23.CrossRefPubMedPubMedCentral
3.
go back to reference Drăgan OC, Fărcăşanu AŞ, Câmpian RS, Turcu RV. Human tooth and root canal morphology reconstruction using magnetic resonance imaging. Clujul Med. 2016;89:137–42.CrossRefPubMedPubMedCentral Drăgan OC, Fărcăşanu AŞ, Câmpian RS, Turcu RV. Human tooth and root canal morphology reconstruction using magnetic resonance imaging. Clujul Med. 2016;89:137–42.CrossRefPubMedPubMedCentral
5.
go back to reference Appel TR, Baumann MA. Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2002;94:256–61.CrossRef Appel TR, Baumann MA. Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2002;94:256–61.CrossRef
6.
go back to reference Gaudino C, Cosgarea R, Heiland S, Csernus R, Beomonte Zobel B, Pham M, et al. MR-imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol. 2011;21:2575–83.CrossRefPubMed Gaudino C, Cosgarea R, Heiland S, Csernus R, Beomonte Zobel B, Pham M, et al. MR-imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol. 2011;21:2575–83.CrossRefPubMed
7.
go back to reference Idiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37:745–52.CrossRefPubMedPubMedCentral Idiyatullin D, Corum C, Moeller S, Prasad HS, Garwood M, Nixdorf DR. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37:745–52.CrossRefPubMedPubMedCentral
8.
go back to reference Cox RJ, Kau CH, Rasche V. Three-dimensional ultrashort echo magnetic resonance imaging of orthodontic appliances in the natural dentition. Am J Orthod Dentofac Orthop. 2012;142:552–61.CrossRef Cox RJ, Kau CH, Rasche V. Three-dimensional ultrashort echo magnetic resonance imaging of orthodontic appliances in the natural dentition. Am J Orthod Dentofac Orthop. 2012;142:552–61.CrossRef
9.
go back to reference Vidmar J, Cankar K, Nemeth L, Serša I. Assessment of the dentin–pulp complex response to caries by ADC mapping. NMR Biomed. 2012;25:1056–62.CrossRefPubMed Vidmar J, Cankar K, Nemeth L, Serša I. Assessment of the dentin–pulp complex response to caries by ADC mapping. NMR Biomed. 2012;25:1056–62.CrossRefPubMed
10.
go back to reference Cankar K, Nemeth L, Bajd F, Vidmar J, Serša I. Discrimination between intact and decayed pulp regions in carious teeth by ADC mapping. Caries Res. 2014;48:467–74.CrossRefPubMed Cankar K, Nemeth L, Bajd F, Vidmar J, Serša I. Discrimination between intact and decayed pulp regions in carious teeth by ADC mapping. Caries Res. 2014;48:467–74.CrossRefPubMed
11.
go back to reference Gerlach K, Ludewig E, Brehm W, Gerhards H, Delling U. Magnetic resonance imaging of pulp in normal and diseased equine cheek teeth. Vet Radiol Ultrasound. 2013;54:48–53.CrossRefPubMed Gerlach K, Ludewig E, Brehm W, Gerhards H, Delling U. Magnetic resonance imaging of pulp in normal and diseased equine cheek teeth. Vet Radiol Ultrasound. 2013;54:48–53.CrossRefPubMed
12.
go back to reference Assaf AT, Zrnc TA, Remus CC, Schönfeld M, Habermann CR, Riecke B, et al. Evaluation of four different optimized magnetic-resonance-imaging sequences for visualization of dental and maxillo-mandibular structures at 3 T. J Craniomaxillofac Surg. 2014;42:1356–63.CrossRefPubMed Assaf AT, Zrnc TA, Remus CC, Schönfeld M, Habermann CR, Riecke B, et al. Evaluation of four different optimized magnetic-resonance-imaging sequences for visualization of dental and maxillo-mandibular structures at 3 T. J Craniomaxillofac Surg. 2014;42:1356–63.CrossRefPubMed
13.
go back to reference Sedlacik J, Kutzner D, Khokale A, Schulze D, Fiehler J, Celik T, et al. Optimized 14 + 1 receive coil array and position system for 3D high-resolution MRI of dental and maxillomandibular structures. Dentomaxillofac Radiol. 2016;45:20150177.CrossRefPubMed Sedlacik J, Kutzner D, Khokale A, Schulze D, Fiehler J, Celik T, et al. Optimized 14 + 1 receive coil array and position system for 3D high-resolution MRI of dental and maxillomandibular structures. Dentomaxillofac Radiol. 2016;45:20150177.CrossRefPubMed
14.
go back to reference Tymofiyeva O, Boldt J, Rottner K, Schmid F, Richter EJ, Jakob PM. High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo. MAGMA. 2009;22:365–74.CrossRefPubMed Tymofiyeva O, Boldt J, Rottner K, Schmid F, Richter EJ, Jakob PM. High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo. MAGMA. 2009;22:365–74.CrossRefPubMed
15.
go back to reference Tymofiyeva O, Proff PC, Rottner K, Düring M, Jakob PM, Richter EJ. Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. J Oral Maxillofac Surg. 2013;71:1159–69.CrossRefPubMed Tymofiyeva O, Proff PC, Rottner K, Düring M, Jakob PM, Richter EJ. Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. J Oral Maxillofac Surg. 2013;71:1159–69.CrossRefPubMed
16.
go back to reference Kress B, Buhl Y, Anders L, Stippich C, Palm F, Bähren W, et al. Quantitative analysis of MRI signal intensity as a tool for evaluating tooth pulp vitality. Dentomaxillofac Radiol. 2004;33:241–4.CrossRefPubMed Kress B, Buhl Y, Anders L, Stippich C, Palm F, Bähren W, et al. Quantitative analysis of MRI signal intensity as a tool for evaluating tooth pulp vitality. Dentomaxillofac Radiol. 2004;33:241–4.CrossRefPubMed
17.
go back to reference Assaf AT, Zrnc TA, Remus CC, Khokale A, Habermann CR, Schulze D, et al. Early detection of pulp necrosis and dental vitality after traumatic dental injuries in children and adolescents by 3-Tesla magnetic resonance imaging. J Craniomaxillofac Surg. 2015;43:1088–93.CrossRefPubMed Assaf AT, Zrnc TA, Remus CC, Khokale A, Habermann CR, Schulze D, et al. Early detection of pulp necrosis and dental vitality after traumatic dental injuries in children and adolescents by 3-Tesla magnetic resonance imaging. J Craniomaxillofac Surg. 2015;43:1088–93.CrossRefPubMed
18.
go back to reference Ploder O, Partik B, Rand T, Fock N, Voracek M, Undt G, et al. Reperfusion of autotransplanted teeth—comparison of clinical measurements by means of dental magnetic resonance imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2001;92:335–40.CrossRef Ploder O, Partik B, Rand T, Fock N, Voracek M, Undt G, et al. Reperfusion of autotransplanted teeth—comparison of clinical measurements by means of dental magnetic resonance imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2001;92:335–40.CrossRef
19.
go back to reference Iohara K, Fujita M, Ariji Y, Yoshikawa M, Watanabe H, Takashima A, et al. Assessment of pulp regeneration induced by stem cell therapy by magnetic resonance imaging. J Endod. 2016;42:397–401.CrossRefPubMed Iohara K, Fujita M, Ariji Y, Yoshikawa M, Watanabe H, Takashima A, et al. Assessment of pulp regeneration induced by stem cell therapy by magnetic resonance imaging. J Endod. 2016;42:397–401.CrossRefPubMed
20.
go back to reference Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:61.CrossRefPubMedPubMedCentral Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:61.CrossRefPubMedPubMedCentral
21.
go back to reference Naito E, Kudo D, Sekine S, Watanabe K, Kobatake Y, Tamaoki N, et al. Characterization of canine dental pulp cells and their neuroregenerative potential. In Vitro Cell Dev Biol Anim. 2015;51:1012–22.CrossRefPubMed Naito E, Kudo D, Sekine S, Watanabe K, Kobatake Y, Tamaoki N, et al. Characterization of canine dental pulp cells and their neuroregenerative potential. In Vitro Cell Dev Biol Anim. 2015;51:1012–22.CrossRefPubMed
22.
go back to reference Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, et al. Magnetic resonance imaging of human dental pulp stem cells in vitro and in vivo. Cell Transplant. 2013;22:1813–29.CrossRefPubMed Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, et al. Magnetic resonance imaging of human dental pulp stem cells in vitro and in vivo. Cell Transplant. 2013;22:1813–29.CrossRefPubMed
23.
go back to reference Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol. 2016;7:140.PubMedPubMedCentral Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol. 2016;7:140.PubMedPubMedCentral
24.
go back to reference Mayer VR. Determination of vitality of the dental pulp. Dtsch Zahnarztl Z. 1975;30:307–12 (in German).PubMed Mayer VR. Determination of vitality of the dental pulp. Dtsch Zahnarztl Z. 1975;30:307–12 (in German).PubMed
25.
go back to reference Bender IB, Landau MA, Fonsecca S, Trowbridge HO. The optimum placement-site of the electrode in electric pulp testing of the 12 anterior teeth. J Am Dent Assoc. 1989;118:305–10.CrossRefPubMed Bender IB, Landau MA, Fonsecca S, Trowbridge HO. The optimum placement-site of the electrode in electric pulp testing of the 12 anterior teeth. J Am Dent Assoc. 1989;118:305–10.CrossRefPubMed
26.
go back to reference Selzer S, Bender IB, Nazimov H. Differential diagnosis of pulp conditions. Oral Surg Oral Med Oral Pathol. 1965;19:383–91.CrossRef Selzer S, Bender IB, Nazimov H. Differential diagnosis of pulp conditions. Oral Surg Oral Med Oral Pathol. 1965;19:383–91.CrossRef
28.
go back to reference Dacre I, Kempson S, Dixon PM. Pathological studies of cheek teeth apical infections in the horse: 5. Aetiopathological findings in 57 apically infected maxillary cheek teeth and histological and ultrastructural findings. Vet J. 2008;178:352–63.CrossRefPubMed Dacre I, Kempson S, Dixon PM. Pathological studies of cheek teeth apical infections in the horse: 5. Aetiopathological findings in 57 apically infected maxillary cheek teeth and histological and ultrastructural findings. Vet J. 2008;178:352–63.CrossRefPubMed
29.
go back to reference Bracher AK, Hofmann C, Bornstedt A, Boujraf S, Hell E, Ulrici J, et al. Feasibility of ultra-short echo time (UTE) magnetic resonance imaging for identification of carious lesions. Magn Reson Med. 2011;66:538–45.CrossRefPubMed Bracher AK, Hofmann C, Bornstedt A, Boujraf S, Hell E, Ulrici J, et al. Feasibility of ultra-short echo time (UTE) magnetic resonance imaging for identification of carious lesions. Magn Reson Med. 2011;66:538–45.CrossRefPubMed
30.
go back to reference Crabbe A, Vandeputte C, Dresselaers T, Sacido AA, Verdugo JM, Eyckmans J, et al. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant. 2010;19:919–36.CrossRefPubMed Crabbe A, Vandeputte C, Dresselaers T, Sacido AA, Verdugo JM, Eyckmans J, et al. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant. 2010;19:919–36.CrossRefPubMed
31.
go back to reference Himmelreich U, Dresselaers T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods. 2009;48:112–24.CrossRefPubMed Himmelreich U, Dresselaers T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods. 2009;48:112–24.CrossRefPubMed
32.
go back to reference Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229:838–46.CrossRefPubMed Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, et al. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229:838–46.CrossRefPubMed
33.
go back to reference Omidkhoda A, Mozdarani H, Movasaghpoor A, Fatholah AA. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay. Toxicol In Vitro. 2007;21:1191–6.CrossRefPubMed Omidkhoda A, Mozdarani H, Movasaghpoor A, Fatholah AA. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay. Toxicol In Vitro. 2007;21:1191–6.CrossRefPubMed
34.
go back to reference Wang X, Wei F, Liu A, Wang L, Wang JC, Ren L, et al. Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials. 2012;33:3719–32.CrossRefPubMed Wang X, Wei F, Liu A, Wang L, Wang JC, Ren L, et al. Cancer stem cell labeling using poly(l-lysine)-modified iron oxide nanoparticles. Biomaterials. 2012;33:3719–32.CrossRefPubMed
35.
go back to reference Yang JX, Tang WL, Wang XX. Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and adhesion capacity. Cytotherapy. 2010;12:251–9.CrossRefPubMed Yang JX, Tang WL, Wang XX. Superparamagnetic iron oxide nanoparticles may affect endothelial progenitor cell migration ability and adhesion capacity. Cytotherapy. 2010;12:251–9.CrossRefPubMed
Metadata
Title
Magnetic resonance imaging in endodontics: a literature review
Authors
Yoshiko Ariji
Eiichiro Ariji
Misako Nakashima
Koichiro Iohara
Publication date
01-01-2018
Publisher
Springer Singapore
Published in
Oral Radiology / Issue 1/2018
Print ISSN: 0911-6028
Electronic ISSN: 1613-9674
DOI
https://doi.org/10.1007/s11282-017-0301-0

Other articles of this Issue 1/2018

Oral Radiology 1/2018 Go to the issue