Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 3/2024

05-10-2023 | Magnetic Resonance Cholangio Pancreatography | Original Article

MC3DU-Net: a multisequence cascaded pipeline for the detection and segmentation of pancreatic cysts in MRI

Authors: Nir Mazor, Gili Dar, Richard Lederman, Naama Lev-Cohain, Jacob Sosna, Leo Joskowicz

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 3/2024

Login to get access

Abstract

Purpose

Radiological detection and follow-up of pancreatic cysts in multisequence MRI studies are required to assess the likelihood of their malignancy and to determine their treatment. The evaluation requires expertise and has not been automated. This paper presents MC3DU-Net, a novel multisequence cascaded pipeline for the detection and segmentation of pancreatic cysts in MRI studies consisting of coronal MRCP and axial TSE MRI sequences.

Methods

MC3DU-Net leverages the information in both sequences by computing a pancreas Region of Interest (ROI) segmentation in the TSE MRI scan, transferring it to MRCP scan, and then detecting and segmenting the cysts in the ROI of the MRCP scan. Both the voxel-level ROI of the pancreas and the segmentation of the cysts are performed with 3D U-Nets trained with Hard Negative Patch Mining, a new technique for class imbalance correction and for the reduction in false positives.

Results

MC3DU-Net was evaluated on a dataset of 158 MRI patient studies with a training/validation/testing split of 118/17/23. Ground truth segmentations of a total of 840 cysts were manually obtained by expert clinicians. MC3DU-Net achieves a mean recall of 0.80 ± 0.19, a mean precision of 0.75 ± 0.26, a mean Dice score of 0.80 ± 0.19 and a mean ASSD of 0.60 ± 0.53 for pancreatic cysts of diameter > 5 mm, which is the clinically relevant endpoint.

Conclusion

MC3DU-Net is the first fully automatic method for detection and segmentation of pancreatic cysts in MRI. Automatic detection and segmentation of pancreatic cysts in MRI can be performed accurately and reliably. It may provide a method for precise disease evaluation and may serve as a second expert reader.
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics 2021. CA Cancer J Clin 71(1):7–33CrossRefPubMed Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics 2021. CA Cancer J Clin 71(1):7–33CrossRefPubMed
2.
go back to reference Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. The Lancet 395(10242):2008–2020CrossRef Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. The Lancet 395(10242):2008–2020CrossRef
4.
go back to reference Tanaka M, Fernández-del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, Wolfgang CL (2017) Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 17(5):738–753CrossRefPubMed Tanaka M, Fernández-del Castillo C, Kamisawa T, Jang JY, Levy P, Ohtsuka T, Wolfgang CL (2017) Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology 17(5):738–753CrossRefPubMed
5.
go back to reference Goh BK, Tan DM, Ho MM, Lim TK, Chung AY, Ooi LL (2014) Utility of the Sendai consensus guidelines for branch-duct intraductal papillary mucinous neoplasms: systematic review. J Gastrointest Surg 18:1350–1357CrossRefPubMed Goh BK, Tan DM, Ho MM, Lim TK, Chung AY, Ooi LL (2014) Utility of the Sendai consensus guidelines for branch-duct intraductal papillary mucinous neoplasms: systematic review. J Gastrointest Surg 18:1350–1357CrossRefPubMed
6.
go back to reference Waters JA, Schmidt CM, Pinchot JW, White PB, Cummings OW, Pitt HA, Lillemoe KD (2008) CT vs MRCP: optimal classification of IPMN type and extent. J Gastrointest Surg 12:101–109CrossRefPubMed Waters JA, Schmidt CM, Pinchot JW, White PB, Cummings OW, Pitt HA, Lillemoe KD (2008) CT vs MRCP: optimal classification of IPMN type and extent. J Gastrointest Surg 12:101–109CrossRefPubMed
7.
go back to reference Liu X, Song L, Liu S, Zhang Y (2021) A review of deep-learning-based medical image segmentation methods. Sustainability 13(3):1224CrossRef Liu X, Song L, Liu S, Zhang Y (2021) A review of deep-learning-based medical image segmentation methods. Sustainability 13(3):1224CrossRef
8.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proceedings of 19th international conference medical image computing and computer-assisted interventions. Springer, pp 424–432 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proceedings of 19th international conference medical image computing and computer-assisted interventions. Springer, pp 424–432
9.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of 19th international conference on medical image computing and computer-assisted interventions. Springer, pp. 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of 19th international conference on medical image computing and computer-assisted interventions. Springer, pp. 234–241
10.
go back to reference Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211CrossRefPubMed Isensee F, Jaeger PF, Kohl SA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211CrossRefPubMed
11.
go back to reference Oh S, Kim YJ, Park YT, Kim KG (2022) Automatic pancreatic cyst lesion segmentation on EUS images using a deep-learning approach. Sensors 22(1):245ADSCrossRef Oh S, Kim YJ, Park YT, Kim KG (2022) Automatic pancreatic cyst lesion segmentation on EUS images using a deep-learning approach. Sensors 22(1):245ADSCrossRef
12.
go back to reference Dmitriev K, Gutenko I, Nadeem S, Kaufman A (2016) Pancreas and cyst segmentation. In: Medical imaging 2016: image processing. SPIE, pp 628–634‏ Dmitriev K, Gutenko I, Nadeem S, Kaufman A (2016) Pancreas and cyst segmentation. In: Medical imaging 2016: image processing. SPIE, pp 628–634‏
13.
go back to reference Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: Proceedings of international conference on medical image computing and computer-assisted intervent. Springer, pp 222–230 Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: Proceedings of international conference on medical image computing and computer-assisted intervent. Springer, pp 222–230
14.
go back to reference Xie L, Yu Q, Zhou Y, Wang Y, Fishman EK, Yuille AL (2019) Recurrent saliency transformation network for tiny target segmentation in abdominal CT scans. IEEE Trans Med Imaging 39(2):514–525CrossRefPubMed Xie L, Yu Q, Zhou Y, Wang Y, Fishman EK, Yuille AL (2019) Recurrent saliency transformation network for tiny target segmentation in abdominal CT scans. IEEE Trans Med Imaging 39(2):514–525CrossRefPubMed
15.
go back to reference Abel L, Wasserthal J, Weikert T, Sauter AW, Nesic I, Obradovic M, Friebe B (2021) Automated detection of pancreatic cystic lesions on CT using deep learning. Diagnostics 11(5):901CrossRefPubMedPubMedCentral Abel L, Wasserthal J, Weikert T, Sauter AW, Nesic I, Obradovic M, Friebe B (2021) Automated detection of pancreatic cystic lesions on CT using deep learning. Diagnostics 11(5):901CrossRefPubMedPubMedCentral
16.
go back to reference Aurelio YS, De Almeida GM, de Castro CL, Braga AP (2019) Learning from imbalanced data sets with weighted cross-entropy function. Neural Process Lett 50:1937–1949CrossRef Aurelio YS, De Almeida GM, de Castro CL, Braga AP (2019) Learning from imbalanced data sets with weighted cross-entropy function. Neural Process Lett 50:1937–1949CrossRef
17.
go back to reference Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357CrossRef Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357CrossRef
18.
go back to reference Douzas G, Bacao F (2018) Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Syst Appl 91:464–471CrossRef Douzas G, Bacao F (2018) Effective data generation for imbalanced learning using conditional generative adversarial networks. Expert Syst Appl 91:464–471CrossRef
19.
go back to reference Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRefPubMed Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRefPubMed
20.
go back to reference Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRefPubMed
21.
go back to reference Chen Y, Ruan D, Xiao J, Wang L, Sun B, Saouaf R, Fan Z (2020) Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks. Med Phys 47(10):4971–4982CrossRefPubMed Chen Y, Ruan D, Xiao J, Wang L, Sun B, Saouaf R, Fan Z (2020) Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks. Med Phys 47(10):4971–4982CrossRefPubMed
22.
go back to reference Lei T, Sun R, Du X, Fu H, Zhang C, Nandi AK (2023) SGU-Net: shape-guided ultralight network for abdominal image segmentation. IEEE J Biomed Health Inform 27(3):1431–1442CrossRef Lei T, Sun R, Du X, Fu H, Zhang C, Nandi AK (2023) SGU-Net: shape-guided ultralight network for abdominal image segmentation. IEEE J Biomed Health Inform 27(3):1431–1442CrossRef
23.
go back to reference Chen X, Chen Z, Li J, Zhang YD, Lin X, Qian X (2021) Model-driven deep learning method for pancreatic cancer segmentation based on spiral-transformation. IEEE Trans Med Imaging 41(1):75–87CrossRefPubMed Chen X, Chen Z, Li J, Zhang YD, Lin X, Qian X (2021) Model-driven deep learning method for pancreatic cancer segmentation based on spiral-transformation. IEEE Trans Med Imaging 41(1):75–87CrossRefPubMed
24.
go back to reference Hille G, Agrawal S, Tummala P, Wybranski C, Pech M, Surov A, Saalfeld S (2023) Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers. Comput Methods Progr Biomed 240:107647CrossRef Hille G, Agrawal S, Tummala P, Wybranski C, Pech M, Surov A, Saalfeld S (2023) Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers. Comput Methods Progr Biomed 240:107647CrossRef
25.
go back to reference Wang F, Cheng C, Cao W, Wu Z, Wang H, Wei W, Liu Z (2023) MFCNet: A multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images. Comput Biol Med 155:106657CrossRefPubMed Wang F, Cheng C, Cao W, Wu Z, Wang H, Wei W, Liu Z (2023) MFCNet: A multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images. Comput Biol Med 155:106657CrossRefPubMed
26.
go back to reference Yao Y, Chen Y, Gou S, Chen S, Zhang X, Tong N (2023) Auto-segmentation of pancreatic tumor in multi-modal image using transferred DSMask R-CNN network. Biomed Signal Process Control 83:104583CrossRef Yao Y, Chen Y, Gou S, Chen S, Zhang X, Tong N (2023) Auto-segmentation of pancreatic tumor in multi-modal image using transferred DSMask R-CNN network. Biomed Signal Process Control 83:104583CrossRef
27.
go back to reference Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y (2021) Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn 110:107562CrossRef Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y (2021) Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn 110:107562CrossRef
28.
go back to reference Huang S, Cheng Z, Lai L, Zheng W, He M, Li J, Yang X (2021) Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med Phys 48(12):7930–7945CrossRefPubMed Huang S, Cheng Z, Lai L, Zheng W, He M, Li J, Yang X (2021) Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med Phys 48(12):7930–7945CrossRefPubMed
29.
go back to reference Kumar V, Sharma MK, Jehadeesan R, Venkatraman B, Sheet D (2021) Adversarial training of deep convolutional neural network for multi-organ segmentation from multi-sequence MRI of the abdomen. In: Proceedings of IEEE international conference on intelligent technologies (CONIT), pp 1–6 Kumar V, Sharma MK, Jehadeesan R, Venkatraman B, Sheet D (2021) Adversarial training of deep convolutional neural network for multi-organ segmentation from multi-sequence MRI of the abdomen. In: Proceedings of IEEE international conference on intelligent technologies (CONIT), pp 1–6
30.
go back to reference Asaturyan H, Thomas EL, Fitzpatrick J, Bell JD, Villarini, B (2019) Advancing pancreas segmentation in multi-protocol MRI volumes using Hausdorff-sine loss function. In: Proceedings of 10th international of workshop on machine learning in medical imaging. Springer, pp 27–35 Asaturyan H, Thomas EL, Fitzpatrick J, Bell JD, Villarini, B (2019) Advancing pancreas segmentation in multi-protocol MRI volumes using Hausdorff-sine loss function. In: Proceedings of 10th international of workshop on machine learning in medical imaging. Springer, pp 27–35
31.
go back to reference Lin D, Wang Z, Li H, Zhang H, Deng L, Ren H, Wang M (2023) Automated measurement of pancreatic fat deposition on Dixon MRI using nnU-Net. J Magn Reson Imaging 57(1):296–307CrossRefPubMed Lin D, Wang Z, Li H, Zhang H, Deng L, Ren H, Wang M (2023) Automated measurement of pancreatic fat deposition on Dixon MRI using nnU-Net. J Magn Reson Imaging 57(1):296–307CrossRefPubMed
32.
go back to reference Yushkevich PA, Gao Y, Gerig G (2016) ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: Proceedings of 38th international IEEE conference on engineering medicine and biology, IEEE. pp 3342–3345 Yushkevich PA, Gao Y, Gerig G (2016) ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: Proceedings of 38th international IEEE conference on engineering medicine and biology, IEEE. pp 3342–3345
Metadata
Title
MC3DU-Net: a multisequence cascaded pipeline for the detection and segmentation of pancreatic cysts in MRI
Authors
Nir Mazor
Gili Dar
Richard Lederman
Naama Lev-Cohain
Jacob Sosna
Leo Joskowicz
Publication date
05-10-2023
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 3/2024
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-023-03020-y

Other articles of this Issue 3/2024

International Journal of Computer Assisted Radiology and Surgery 3/2024 Go to the issue