Skip to main content
Top
Published in: Journal of Robotic Surgery 1/2012

01-03-2012 | Original Article

Magnetic propulsion and ultrasound tracking of endovascular devices

Authors: S. Tognarelli, V. Castelli, G. Ciuti, C. Di Natali, E. Sinibaldi, P. Dario, A. Menciassi

Published in: Journal of Robotic Surgery | Issue 1/2012

Login to get access

Abstract

In this paper a robotic means of magnetic navigation of an endovascular device a few millimeters in diameter is presented. The technique, based on traditional computer-assisted surgery adapted to intravascular medical procedures, includes a manipulator for magnetic dragging interfaced with an ultrasound system for tracking the endovascular device. The main factors affecting device propulsion are theoretically analyzed, including magnetic forces, fluidic forces, and friction forces between the endovascular device and the vessel. A dedicated set-up for measuring locomotion, and for navigation with and against the flow, has been developed and preliminary tests have been performed to derive the best configuration for controlled magnetic dragging in the vascular system. Experimental outcomes are consistent with a simple analytical model that analyzes dragging of the magnetic capsule in a tube. By means of this model, different working conditions can be considered to select the appropriate conditions, for example flow rate, coefficient of friction, or magnetic properties.
Appendix
Available only for authorised users
Literature
1.
go back to reference Naghavi M, Falk E, Hecht HS, Jamieson MJ, Kaul S, Berman D et al (2006) From vulnerable plaque to vulnerable patient-part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) task force report. Am J Cardiol 98(2):2–15CrossRef Naghavi M, Falk E, Hecht HS, Jamieson MJ, Kaul S, Berman D et al (2006) From vulnerable plaque to vulnerable patient-part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) task force report. Am J Cardiol 98(2):2–15CrossRef
2.
go back to reference Casscells W, Naghavi M, Willerson JT (2003) Vulnerable atherosclerotic plaque–a multifocal disease. Circulation 107(16):2072–2075PubMedCrossRef Casscells W, Naghavi M, Willerson JT (2003) Vulnerable atherosclerotic plaque–a multifocal disease. Circulation 107(16):2072–2075PubMedCrossRef
3.
go back to reference Bourantas CV, Garg S, Naka KK, Thury A, Hoye A, Michalis LK (2011) Focus on the research utility of intravascular ultrasound-comparison with other invasive modalities. Cardiovasc Ultrasoun 9(2):1–10 Bourantas CV, Garg S, Naka KK, Thury A, Hoye A, Michalis LK (2011) Focus on the research utility of intravascular ultrasound-comparison with other invasive modalities. Cardiovasc Ultrasoun 9(2):1–10
4.
go back to reference Chun KRJ, Schmidt B, Köktürk B, Tilz R, Fürnkranz A, Konstantinidou M et al (2008) Catheter ablation-new developments in robotics. Herz 33(8):586–589PubMedCrossRef Chun KRJ, Schmidt B, Köktürk B, Tilz R, Fürnkranz A, Konstantinidou M et al (2008) Catheter ablation-new developments in robotics. Herz 33(8):586–589PubMedCrossRef
8.
go back to reference Pan Q, Guo S, Okada T (2010) Development of a wireless hybrid microrobot for biomedical applications. Conf Proc IEEE/RSJ Int Conf Intell Rob Syst 2010:5768–5773 Pan Q, Guo S, Okada T (2010) Development of a wireless hybrid microrobot for biomedical applications. Conf Proc IEEE/RSJ Int Conf Intell Rob Syst 2010:5768–5773
9.
go back to reference Fountain TWR, Kailat PV, Abbott JJ (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. Conf Proc IEEE Rob Aut 2010:576–581 Fountain TWR, Kailat PV, Abbott JJ (2010) Wireless control of magnetic helical microrobots using a rotating-permanent-magnet manipulator. Conf Proc IEEE Rob Aut 2010:576–581
10.
go back to reference Martel S, Mohammadi M, Lu OZ, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582CrossRef Martel S, Mohammadi M, Lu OZ, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28(4):571–582CrossRef
11.
go back to reference Arcese L, Cherry A, Fruchard M, Ferreira A (2010) Optimal trajectory for a microrobot navigating in blood vessels. Conf Proc IEEE Eng Med Bio Soc 2010:1950–1953 Arcese L, Cherry A, Fruchard M, Ferreira A (2010) Optimal trajectory for a microrobot navigating in blood vessels. Conf Proc IEEE Eng Med Bio Soc 2010:1950–1953
12.
go back to reference Choi H, Choi J, Jeong S, Yu C, Park JO, Park S (2009) Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system. Smart Mater Struct 18(11):115017–115023CrossRef Choi H, Choi J, Jeong S, Yu C, Park JO, Park S (2009) Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system. Smart Mater Struct 18(11):115017–115023CrossRef
13.
go back to reference Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25(5):527–536CrossRef Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 25(5):527–536CrossRef
14.
go back to reference Nelson BJ, Kaliakatsos IK, Abbot JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85PubMedCrossRef Nelson BJ, Kaliakatsos IK, Abbot JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85PubMedCrossRef
15.
go back to reference Saam T, Hatsukam TS, Yarnykh VL, Hayes CE, Underhill H, Chu BC et al (2007) Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and general electric scanners. J Magn Reson Imaging 26(2):344–352PubMedCrossRef Saam T, Hatsukam TS, Yarnykh VL, Hayes CE, Underhill H, Chu BC et al (2007) Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and general electric scanners. J Magn Reson Imaging 26(2):344–352PubMedCrossRef
16.
go back to reference Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241(2):459–468PubMedCrossRef Kerwin WS, O’Brien KD, Ferguson MS, Polissar N, Hatsukami TS, Yuan C (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241(2):459–468PubMedCrossRef
17.
go back to reference Saba L, Caddeo G, Sanfilippo R, Montisci R, Mallarini G (2007) Efficacy and sensitivity of axial scans and different reconstruction methods in the study of the ulcerated carotid plaque using multidetector-row CT angiography: comparison with surgical results. Am J Neuroradiol 28(4):716–723PubMed Saba L, Caddeo G, Sanfilippo R, Montisci R, Mallarini G (2007) Efficacy and sensitivity of axial scans and different reconstruction methods in the study of the ulcerated carotid plaque using multidetector-row CT angiography: comparison with surgical results. Am J Neuroradiol 28(4):716–723PubMed
18.
go back to reference Whittingham TA (2007) Medical diagnostic applications and sources. Prog Biophys Mol Biol 93(1):84–110PubMedCrossRef Whittingham TA (2007) Medical diagnostic applications and sources. Prog Biophys Mol Biol 93(1):84–110PubMedCrossRef
19.
go back to reference Kakkos SK, Stevens JM, Nicolaides AN, Kyriacou E, Pattichis CS, Geroulakos G et al (2007) Texture analysis of ultrasonic images of symptomatic carotid plaques can identify those plaques associated with ipsilateral embolic brain infarction. Eur J Vasc Endovasc 33(4):422–429CrossRef Kakkos SK, Stevens JM, Nicolaides AN, Kyriacou E, Pattichis CS, Geroulakos G et al (2007) Texture analysis of ultrasonic images of symptomatic carotid plaques can identify those plaques associated with ipsilateral embolic brain infarction. Eur J Vasc Endovasc 33(4):422–429CrossRef
20.
go back to reference Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15(5):946–959PubMedCrossRef Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15(5):946–959PubMedCrossRef
21.
go back to reference Chinzei K, Kikinis R, Jolesz FA (1999) MR compatibility of mechatronic devices: design criteria. Conf Proc Med Image Comput Comput Assist Interv 1999:1020–1030 Chinzei K, Kikinis R, Jolesz FA (1999) MR compatibility of mechatronic devices: design criteria. Conf Proc Med Image Comput Comput Assist Interv 1999:1020–1030
22.
go back to reference Xu XC, Hu CH, Sun L, Yen J, Shung KK (2005) High-frequency high frame rate ultrasound imaging system for small animal imaging with linear arrays. Conf Proc IEEE Int Ultrason Symp 2005:1431–1434 Xu XC, Hu CH, Sun L, Yen J, Shung KK (2005) High-frequency high frame rate ultrasound imaging system for small animal imaging with linear arrays. Conf Proc IEEE Int Ultrason Symp 2005:1431–1434
23.
go back to reference Ciuti G, Valdastri P, Menciassi A, Dario P (2010) Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28(2):199–207CrossRef Ciuti G, Valdastri P, Menciassi A, Dario P (2010) Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28(2):199–207CrossRef
24.
go back to reference White FH (1991) Viscous fluid flow. McGraw-Hill, New York White FH (1991) Viscous fluid flow. McGraw-Hill, New York
25.
go back to reference Simi M, Ciuti G, Tognarelli S, Valdastri P, Menciassi A, Dario P (2010) Magnetic link design for a robotic laparoscopic camera. J Appl Phys 107(9):302–303CrossRef Simi M, Ciuti G, Tognarelli S, Valdastri P, Menciassi A, Dario P (2010) Magnetic link design for a robotic laparoscopic camera. J Appl Phys 107(9):302–303CrossRef
26.
go back to reference Prokopovich P, Perni S (2010) Prediction of the frictional behavior of mammalian tissues against biomaterials. Acta Biomater 6:4052–4059PubMedCrossRef Prokopovich P, Perni S (2010) Prediction of the frictional behavior of mammalian tissues against biomaterials. Acta Biomater 6:4052–4059PubMedCrossRef
27.
go back to reference Takashimaa K, Shimomuraa R, Kitoua T, Teradaa H, Yoshinakab K, Ikeuchia K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40:319–328CrossRef Takashimaa K, Shimomuraa R, Kitoua T, Teradaa H, Yoshinakab K, Ikeuchia K (2007) Contact and friction between catheter and blood vessel. Tribol Int 40:319–328CrossRef
28.
go back to reference Salerno M, Ciuti G, Lucarini G, Rizzo R, Valdastri P, Menciassi A, Landi A, Dario P (2012) A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing. Meas Sci Technol. 23(1). doi:10.1088/0957-0233/23/1/015701 Salerno M, Ciuti G, Lucarini G, Rizzo R, Valdastri P, Menciassi A, Landi A, Dario P (2012) A discrete-time localization method for capsule endoscopy based on on-board magnetic sensing. Meas Sci Technol. 23(1). doi:10.​1088/​0957-0233/​23/​1/​015701
29.
go back to reference Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y (2010) Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 63(5):1230–1237PubMedCrossRef Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y (2010) Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 63(5):1230–1237PubMedCrossRef
Metadata
Title
Magnetic propulsion and ultrasound tracking of endovascular devices
Authors
S. Tognarelli
V. Castelli
G. Ciuti
C. Di Natali
E. Sinibaldi
P. Dario
A. Menciassi
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Journal of Robotic Surgery / Issue 1/2012
Print ISSN: 1863-2483
Electronic ISSN: 1863-2491
DOI
https://doi.org/10.1007/s11701-011-0332-1

Other articles of this Issue 1/2012

Journal of Robotic Surgery 1/2012 Go to the issue