Skip to main content
Top
Published in: Molecular Brain 1/2016

Open Access 01-12-2016 | Review

Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse

Authors: Vidya Sagar, Venkata Subba Rao Atluri, Sudheesh Pilakka-Kanthikeel, Madhavan Nair

Published in: Molecular Brain | Issue 1/2016

Login to get access

Abstract

The human immunodeficiency virus (HIV) is a neurotropic virus. It induces neurotoxicity and subsequent brain pathologies in different brain cells. Addiction to recreational drugs remarkably affects the initiation of HIV infections and expedites the progression of acquired immunodeficiency syndrome (AIDS) associated neuropathogenesis. Symptoms of HIV-associated neurocognitive disorders (HAND) are noticed in many AIDS patients. At least 50 % of HIV diagnosed cases show one or other kind of neuropathological signs or symptoms during different stages of disease progression. In the same line, mild to severe neurological alterations are seen in at least 80 % autopsies of AIDS patients. Neurological illnesses weaken the connections between neurons causing significant altercations in synaptic plasticity. Synaptic plasticity alterations during HIV infection and recreational drug abuse are mediated by complex cellular phenomena involving changes in gene expression and subsequent loss of dendritic and spine morphology and physiology. New treatment strategies with ability to deliver drugs across blood-brain barrier (BBB) are being intensively investigated. In this context, magnetic nanoparticles (MNPs) based nanoformulations have shown significant potential for target specificity, drug delivery, drug release, and bioavailability of desired amount of drugs in non-invasive brain targeting. MNPs-based potential therapies to promote neuronal plasticity during HIV infection and recreational drug abuse are being developed.
Literature
1.
go back to reference Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, et al. Early brain injury in the SIV-macaque model of AIDS. AIDS. 2000;14(18):2841–9.CrossRefPubMed Gonzalez RG, Cheng LL, Westmoreland SV, Sakaie KE, Becerra LR, Lee PL, et al. Early brain injury in the SIV-macaque model of AIDS. AIDS. 2000;14(18):2841–9.CrossRefPubMed
2.
go back to reference Gray F, Lescs MC, Keohane C, Paraire F, Marc B, Durigon M, et al. Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol. 1992;51(2):177–85.CrossRefPubMed Gray F, Lescs MC, Keohane C, Paraire F, Marc B, Durigon M, et al. Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol. 1992;51(2):177–85.CrossRefPubMed
4.
go back to reference Peluso R, Haase A, Stowring L, Edwards M, Ventura P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology. 1985;147(1):231–6.CrossRefPubMed Peluso R, Haase A, Stowring L, Edwards M, Ventura P. A Trojan Horse mechanism for the spread of visna virus in monocytes. Virology. 1985;147(1):231–6.CrossRefPubMed
5.
go back to reference Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26(4):1098–106. doi:10.1523/JNEUROSCI.3863-05.2006.CrossRefPubMed Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW. CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci. 2006;26(4):1098–106. doi:10.​1523/​JNEUROSCI.​3863-05.​2006.CrossRefPubMed
6.
8.
go back to reference Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A. 1998;95(6):3117–21.CrossRefPubMedPubMedCentral Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci U S A. 1998;95(6):3117–21.CrossRefPubMedPubMedCentral
9.
go back to reference Nath A, Geiger J. Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol. 1998;54(1):19–33.CrossRefPubMed Nath A, Geiger J. Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol. 1998;54(1):19–33.CrossRefPubMed
12.
go back to reference Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem. 2000;74(6):2373–9.CrossRefPubMed Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem. 2000;74(6):2373–9.CrossRefPubMed
15.
go back to reference Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol. 1997;74(1–2):1–8.CrossRefPubMed Wesselingh SL, Takahashi K, Glass JD, McArthur JC, Griffin JW, Griffin DE. Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J Neuroimmunol. 1997;74(1–2):1–8.CrossRefPubMed
16.
go back to reference Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE. An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol. 1997;3(6):401–16.CrossRefPubMed Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE. An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol. 1997;3(6):401–16.CrossRefPubMed
17.
go back to reference Ullrich CK, Groopman JE, Ganju RK. HIV-1 gp120- and gp160-induced apoptosis in cultured endothelial cells is mediated by caspases. Blood. 2000;96(4):1438–42.PubMed Ullrich CK, Groopman JE, Ganju RK. HIV-1 gp120- and gp160-induced apoptosis in cultured endothelial cells is mediated by caspases. Blood. 2000;96(4):1438–42.PubMed
20.
go back to reference Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, Choi J, et al. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 2004;18(10):1141–3. doi:10.1096/fj.04-1676fje.PubMed Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, Choi J, et al. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 2004;18(10):1141–3. doi:10.​1096/​fj.​04-1676fje.PubMed
22.
go back to reference Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, et al. Activation of the Adenosine A1 Receptor Inhibits HIV-1 Tat-Induced Apoptosis by Reducing Nuclear Factor-κB Activation and Inducible Nitric-Oxide Synthase. Mol Pharmacol. 2007;72(4):856–67. doi:10.1124/mol.106.031427.CrossRefPubMed Pingle SC, Jajoo S, Mukherjea D, Sniderhan LF, Jhaveri KA, Marcuzzi A, et al. Activation of the Adenosine A1 Receptor Inhibits HIV-1 Tat-Induced Apoptosis by Reducing Nuclear Factor-κB Activation and Inducible Nitric-Oxide Synthase. Mol Pharmacol. 2007;72(4):856–67. doi:10.​1124/​mol.​106.​031427.CrossRefPubMed
23.
go back to reference Zauli G, Secchiero P, Rodella L, Gibellini D, Mirandola P, Mazzoni M, et al. HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem. 2000;275(6):4159–65.CrossRefPubMed Zauli G, Secchiero P, Rodella L, Gibellini D, Mirandola P, Mazzoni M, et al. HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem. 2000;275(6):4159–65.CrossRefPubMed
24.
go back to reference Zhu J, Mactutus CF, Wallace DR, Booze RM. HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther. 2009;329(3):1071–83. doi:10.1124/jpet.108.150144.CrossRefPubMedPubMedCentral Zhu J, Mactutus CF, Wallace DR, Booze RM. HIV-1 Tat protein-induced rapid and reversible decrease in [3H]dopamine uptake: dissociation of [3H]dopamine uptake and [3H]2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (WIN 35,428) binding in rat striatal synaptosomes. J Pharmacol Exp Ther. 2009;329(3):1071–83. doi:10.​1124/​jpet.​108.​150144.CrossRefPubMedPubMedCentral
28.
31.
go back to reference Borgne-Sanchez A, Dupont S, Langonne A, Baux L, Lecoeur H, Chauvier D, et al. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of alphaVbeta3-expressing endothelial cells. Cell Death Differ. 2007;14(3):422–35. doi:10.1038/sj.cdd.4402018.CrossRefPubMed Borgne-Sanchez A, Dupont S, Langonne A, Baux L, Lecoeur H, Chauvier D, et al. Targeted Vpr-derived peptides reach mitochondria to induce apoptosis of alphaVbeta3-expressing endothelial cells. Cell Death Differ. 2007;14(3):422–35. doi:10.​1038/​sj.​cdd.​4402018.CrossRefPubMed
32.
go back to reference Piller SC, Ewart GD, Jans DA, Gage PW, Cox GB. The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J Virol. 1999;73(5):4230–8.PubMedPubMedCentral Piller SC, Ewart GD, Jans DA, Gage PW, Cox GB. The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J Virol. 1999;73(5):4230–8.PubMedPubMedCentral
37.
go back to reference Kort JJ, Jalonen TO. The nef protein of the human immunodeficiency virus type 1 (HIV-1) inhibits a large-conductance potassium channel in human glial cells. Neurosci Lett. 1998;251(1):1–4.CrossRefPubMed Kort JJ, Jalonen TO. The nef protein of the human immunodeficiency virus type 1 (HIV-1) inhibits a large-conductance potassium channel in human glial cells. Neurosci Lett. 1998;251(1):1–4.CrossRefPubMed
38.
go back to reference Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol. 2003;170(4):1716–27.CrossRefPubMed Olivetta E, Percario Z, Fiorucci G, Mattia G, Schiavoni I, Dennis C, et al. HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol. 2003;170(4):1716–27.CrossRefPubMed
39.
go back to reference Meggendorfer M, Rothenaigner I, Tigges B, Vincendeau M, Brack-Werner R. Neurotoxicity of HIV-1 proteins. The Neurology of AIDS. New York: Oxford University Press; 2011. Meggendorfer M, Rothenaigner I, Tigges B, Vincendeau M, Brack-Werner R. Neurotoxicity of HIV-1 proteins. The Neurology of AIDS. New York: Oxford University Press; 2011.
42.
go back to reference Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Moore DJ, Gonzalez R, et al. Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004;10(1):1–14. doi:10.1017/S1355617704101021.CrossRefPubMed Rippeth JD, Heaton RK, Carey CL, Marcotte TD, Moore DJ, Gonzalez R, et al. Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc. 2004;10(1):1–14. doi:10.​1017/​S135561770410102​1.CrossRefPubMed
43.
44.
46.
go back to reference Nair MP, Chadha KC, Hewitt RG, Mahajan S, Sweet A, Schwartz SA. Cocaine differentially modulates chemokine production by mononuclear cells from normal donors and human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol. 2000;7(1):96–100.PubMedPubMedCentral Nair MP, Chadha KC, Hewitt RG, Mahajan S, Sweet A, Schwartz SA. Cocaine differentially modulates chemokine production by mononuclear cells from normal donors and human immunodeficiency virus type 1-infected patients. Clin Diagn Lab Immunol. 2000;7(1):96–100.PubMedPubMedCentral
47.
go back to reference Bagetta G, Piccirilli S, Del Duca C, Morrone LA, Rombolà L, Nappi G, et al. Inducible nitric oxide synthase is involved in the mechanisms of cocaine enhanced neuronal apoptosis induced by HIV-1 gp120 in theneocortex of rat. Neurosci Lett. 2004;356(3):183–6. doi:10.1016/j.neulet.2003.11.065.CrossRefPubMed Bagetta G, Piccirilli S, Del Duca C, Morrone LA, Rombolà L, Nappi G, et al. Inducible nitric oxide synthase is involved in the mechanisms of cocaine enhanced neuronal apoptosis induced by HIV-1 gp120 in theneocortex of rat. Neurosci Lett. 2004;356(3):183–6. doi:10.​1016/​j.​neulet.​2003.​11.​065.CrossRefPubMed
49.
go back to reference Buch S, Yao H, Roy S. HIV and cocaine. The Neurology of AIDS. New York: Oxford University Press; 2011. Buch S, Yao H, Roy S. HIV and cocaine. The Neurology of AIDS. New York: Oxford University Press; 2011.
51.
go back to reference Rogers TJ, Steele AD, Howard OM, Oppenheim JJ. Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann N Y Acad Sci. 2000;917:19–28.CrossRefPubMed Rogers TJ, Steele AD, Howard OM, Oppenheim JJ. Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann N Y Acad Sci. 2000;917:19–28.CrossRefPubMed
52.
54.
go back to reference Cabran GA, Raborn ES. HIV-1 and Cannabinoids. The Neurology of AIDS. New York: Oxford University Press; 2011. Cabran GA, Raborn ES. HIV-1 and Cannabinoids. The Neurology of AIDS. New York: Oxford University Press; 2011.
60.
go back to reference Samikkannu T, Atluri VSR, Arias AY, Rao KVK, Mulet CT, Jayant RD, et al. HIV-1 Subtypes B and C Tat Differentially Impact Synaptic Plasticity Expression and Implicates HIV-Associated Neurocognitive Disorders(). Curr HIV Res. 2014;12(6):397–405.CrossRefPubMedPubMedCentral Samikkannu T, Atluri VSR, Arias AY, Rao KVK, Mulet CT, Jayant RD, et al. HIV-1 Subtypes B and C Tat Differentially Impact Synaptic Plasticity Expression and Implicates HIV-Associated Neurocognitive Disorders(). Curr HIV Res. 2014;12(6):397–405.CrossRefPubMedPubMedCentral
62.
go back to reference Atluri VS, Pilakka-Kanthikeel S, Samikkannu T, Sagar V, Kurapati KR, Saxena SK, et al. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder. Mol Brain. 2014;7:37. doi:10.1186/1756-6606-7-37.CrossRefPubMedPubMedCentral Atluri VS, Pilakka-Kanthikeel S, Samikkannu T, Sagar V, Kurapati KR, Saxena SK, et al. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder. Mol Brain. 2014;7:37. doi:10.​1186/​1756-6606-7-37.CrossRefPubMedPubMedCentral
64.
go back to reference Sagar V, Pilakka-Kanthikeel S, Atluri VSR, Ding H, Arias AY, Jayant RD, et al. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS. J Biomed Nanotechnol. 2015;11(10):1722–33.CrossRefPubMedPubMedCentral Sagar V, Pilakka-Kanthikeel S, Atluri VSR, Ding H, Arias AY, Jayant RD, et al. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS. J Biomed Nanotechnol. 2015;11(10):1722–33.CrossRefPubMedPubMedCentral
65.
go back to reference Atluri VS, Hernandez O, Hidalgo M, Kurapati KRV, Thangavel S, Kanthikeel SP, et al. Methamphetamine treatment and HIV-1 infection dysregulate Synaptic plasticity in SKNMC neuronal cells. J NeuroImmune Pharmacol. 2015;10(2):S59. Atluri VS, Hernandez O, Hidalgo M, Kurapati KRV, Thangavel S, Kanthikeel SP, et al. Methamphetamine treatment and HIV-1 infection dysregulate Synaptic plasticity in SKNMC neuronal cells. J NeuroImmune Pharmacol. 2015;10(2):S59.
66.
go back to reference Yndart A, Agudelo M, Raymond A, Atluri VSR, Munoz-Caamano K, Pilakka-Kanthikeel S, et al. Bath salts alter synaptic plasticity gene expression in neurons. J NeuroImmune Pharmacol. 2014;9(1):62. Yndart A, Agudelo M, Raymond A, Atluri VSR, Munoz-Caamano K, Pilakka-Kanthikeel S, et al. Bath salts alter synaptic plasticity gene expression in neurons. J NeuroImmune Pharmacol. 2014;9(1):62.
68.
go back to reference Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine. 2010;5:157–66.PubMedPubMedCentral Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine. 2010;5:157–66.PubMedPubMedCentral
69.
go back to reference Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.CrossRefPubMedPubMedCentral Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci Rep. 2016;6:25309.CrossRefPubMedPubMedCentral
70.
71.
go back to reference Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun. 2013;4:1707.CrossRefPubMed Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun. 2013;4:1707.CrossRefPubMed
73.
go back to reference Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, et al. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine. 2015;11(6):1387–97. doi:10.1016/j.nano.2015.03.009.PubMed Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, et al. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine. 2015;11(6):1387–97. doi:10.​1016/​j.​nano.​2015.​03.​009.PubMed
75.
go back to reference Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H, et al. Microglia-derived HIV Nef + exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides. Journal of neurovirology. 2015:1–11. doi:10.1007/s13365-015-0397-0 Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H, et al. Microglia-derived HIV Nef + exosome impairment of the blood–brain barrier is treatable by nanomedicine-based delivery of Nef peptides. Journal of neurovirology. 2015:1–11. doi:10.​1007/​s13365-015-0397-0
76.
go back to reference Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M. Targeted Brain Derived Neurotropic Factors (BDNF) Delivery across the Blood–brain Barrier for Neuro-Protection Using Magnetic Nano Carriers: An In-Vitro Study. PLoS One. 2013;8(4):e62241.CrossRefPubMedPubMedCentral Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M. Targeted Brain Derived Neurotropic Factors (BDNF) Delivery across the Blood–brain Barrier for Neuro-Protection Using Magnetic Nano Carriers: An In-Vitro Study. PLoS One. 2013;8(4):e62241.CrossRefPubMedPubMedCentral
77.
go back to reference Ortega-Gutiérrez S, Molina-Holgado E, Arévalo-Martín Á, Correa F, Viso A, López-Rodríguez ML, et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005;19(10):1338–40. doi:10.1096/fj.04-2464fje.PubMed Ortega-Gutiérrez S, Molina-Holgado E, Arévalo-Martín Á, Correa F, Viso A, López-Rodríguez ML, et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005;19(10):1338–40. doi:10.​1096/​fj.​04-2464fje.PubMed
78.
go back to reference Venkata A, Pilakka-Kanthikeel S, Kurapati KR, Sagar V, Thangavel S, Ding H, et al. Role of HDAC2 and miR-485 in regulation of synaptic plasticity genes in HIV infection: Implication in HAND. J Neuroimmune Pharmacol. 2014;9(1):6. Venkata A, Pilakka-Kanthikeel S, Kurapati KR, Sagar V, Thangavel S, Ding H, et al. Role of HDAC2 and miR-485 in regulation of synaptic plasticity genes in HIV infection: Implication in HAND. J Neuroimmune Pharmacol. 2014;9(1):6.
81.
go back to reference Tombacz E, Majzik A, Horvat ZS, Illes E. Magnetite in aqueous medium: Coating its surface and surface coated with it. Rom Rep Phys. 2006;58(3):281–6. Tombacz E, Majzik A, Horvat ZS, Illes E. Magnetite in aqueous medium: Coating its surface and surface coated with it. Rom Rep Phys. 2006;58(3):281–6.
82.
go back to reference Ghose SK, Petitto SC, Tanwar KS, Lo CS, Eng PJ, Chaka AM et al. Chapter 1 Surface Structure and Reactivity of Iron Oxide-Water Interfaces. Developments in Earth and Environmental Sciences. Amsterdam, The Netherlands: Elsevier; 2007. p. 1–29. Ghose SK, Petitto SC, Tanwar KS, Lo CS, Eng PJ, Chaka AM et al. Chapter 1 Surface Structure and Reactivity of Iron Oxide-Water Interfaces. Developments in Earth and Environmental Sciences. Amsterdam, The Netherlands: Elsevier; 2007. p. 1–29.
84.
go back to reference Wiogo HTR, Lim M, Bulmus V, Gutierrez L, Woodward RC, Amal R. Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir. 2012;28(9):4346–56. doi:10.1021/la204740t.CrossRefPubMed Wiogo HTR, Lim M, Bulmus V, Gutierrez L, Woodward RC, Amal R. Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir. 2012;28(9):4346–56. doi:10.​1021/​la204740t.CrossRefPubMed
85.
go back to reference Sagar V, Pilakka-Kanthikeel S, Ding H, Atluri VSR, Jayant RD, Kaushik A, et al. Novel magneto-electric nanodelivery of “microRNA mimic” across blood–brain barrier: Implications to cocaine modulation on HIV-associated neurocognitive disorders. J NeuroImmune Pharmacol. 2014;9(1):49. Sagar V, Pilakka-Kanthikeel S, Ding H, Atluri VSR, Jayant RD, Kaushik A, et al. Novel magneto-electric nanodelivery of “microRNA mimic” across blood–brain barrier: Implications to cocaine modulation on HIV-associated neurocognitive disorders. J NeuroImmune Pharmacol. 2014;9(1):49.
87.
go back to reference Sagar VHZ, Kaushik A, Roy U, Jayant RD, Atluri VSR, Pilakka-Kanthikeel S, El-Haage N, Nair M. Effect of Magneto-electric nanoparticle on deep brain motor coordination activity. J NeuroImmune Pharmacol. 2015;10(S2):S99–S100. doi:10.1007/s11481-015-9596-y. Sagar VHZ, Kaushik A, Roy U, Jayant RD, Atluri VSR, Pilakka-Kanthikeel S, El-Haage N, Nair M. Effect of Magneto-electric nanoparticle on deep brain motor coordination activity. J NeuroImmune Pharmacol. 2015;10(S2):S99–S100. doi:10.​1007/​s11481-015-9596-y.
88.
Metadata
Title
Magnetic nanotherapeutics for dysregulated synaptic plasticity during neuroAIDS and drug abuse
Authors
Vidya Sagar
Venkata Subba Rao Atluri
Sudheesh Pilakka-Kanthikeel
Madhavan Nair
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2016
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-016-0236-0

Other articles of this Issue 1/2016

Molecular Brain 1/2016 Go to the issue