Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2019

Open Access 01-12-2019 | Macular Degeneration | Research

Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina

Authors: Carsten Balser, Anne Wolf, Marc Herb, Thomas Langmann

Published in: Journal of Neuroinflammation | Issue 1/2019

Login to get access

Abstract

Background

Age-related macular degeneration (AMD) is a leading cause of visual impairment in the elderly. The neovascular (wet) form of AMD can be treated with intravitreal injections of different anti-vascular endothelial growth factor (VEGF) agents. Placental growth factor (PGF) is another member of the VEGF family of cytokines with pro-angiogenic and pro-inflammatory effects. Here, we aimed to compare single and combined inhibition of VEGF-A and PGF in the laser-induced mouse model of choroidal neovascularization (CNV) with a focus on the effects on retinal mononuclear phagocytes.

Methods

CNV was induced in C57BL/6J mice using a YAG-Laser. Immediately after laser damage antibodies against VEGF-A (aVEGF), anti-PGF (aPGF), aVEGF combined with aPGF, aflibercept, or IgG control were injected intravitreally in both eyes. Three and 7 days after laser damage, the vascular leakage was determined by fluorescence angiography. Lectin staining of retinal and RPE/choroidal flat mounts was used to monitor CNV. In situ mRNA co-expression of Iba1, VEGF and PGF were quantified using in situ hybridization. Retinal and RPE/choroidal protein levels of VEGF and PGF as well as the pro-inflammatory cytokines IL-6, IL1-beta, and TNF were determined by ELISA.

Results

Early (day 3) and intermediate (day 7) vascular leakage and CNV were significantly inhibited by PGF and VEGF-A co-inhibition, most effectively with the trap molecule aflibercept. While VEGF-A blockage alone had no effects, trapping PGF especially with aflibercept prevented the accumulation of reactive microglia and macrophages in laser lesions. The lesion-related mRNA expression and secretion of VEGF-A and PGF by mononuclear phagocytes were potently suppressed by PGF and partially by VEGF-A inhibition. Protein levels of IL-6 and IL1-beta were strongly reduced in all treatment groups.

Conclusions

Retinal inhibition of PGF in combination with VEGF-A prevents vascular leakage and CNV possibly via modulating their own expression in mononuclear phagocytes. PGF-related, optimized strategies to target inflammation-mediated angiogenesis may help to increase efficacy and reduce non-responders in the treatment of wet AMD patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.CrossRef Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.CrossRef
2.
go back to reference Nguyen CL, Oh LJ, Wong E, Wei J, Chilov M. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2018;18:130.CrossRef Nguyen CL, Oh LJ, Wong E, Wei J, Chilov M. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2018;18:130.CrossRef
3.
go back to reference Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther. 2016;10:1857–67.CrossRef Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther. 2016;10:1857–67.CrossRef
4.
go back to reference Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015;98:713–25.CrossRef Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol. 2015;98:713–25.CrossRef
5.
go back to reference Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS, et al. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36:2827–42.CrossRef Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS, et al. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36:2827–42.CrossRef
6.
go back to reference Guillonneau X, Eandi CM, Paques M, Sahel JA, Sapieha P, Sennlaub F. On phagocytes and macular degeneration. Prog Retin Eye Res. 2017;61:98–128.CrossRef Guillonneau X, Eandi CM, Paques M, Sahel JA, Sapieha P, Sennlaub F. On phagocytes and macular degeneration. Prog Retin Eye Res. 2017;61:98–128.CrossRef
7.
go back to reference Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30–57.CrossRef Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30–57.CrossRef
8.
go back to reference Deissler HL, Lang GK, Lang GE. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells. Exp Eye Res. 2014;122:20–31.CrossRef Deissler HL, Lang GK, Lang GE. Capacity of aflibercept to counteract VEGF-stimulated abnormal behavior of retinal microvascular endothelial cells. Exp Eye Res. 2014;122:20–31.CrossRef
9.
go back to reference Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.CrossRef Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.CrossRef
11.
go back to reference Ando R, Noda K, Namba S, Saito W, Kanda A, Ishida S. Aqueous humour levels of placental growth factor in diabetic retinopathy. Acta Ophthalmol. 2014;92:e245–6.CrossRef Ando R, Noda K, Namba S, Saito W, Kanda A, Ishida S. Aqueous humour levels of placental growth factor in diabetic retinopathy. Acta Ophthalmol. 2014;92:e245–6.CrossRef
12.
go back to reference Kovacs K, Marra KV, Yu G, Wagley S, Ma J, Teague GC, Nandakumar N, Lashkari K, Arroyo JG. Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Invest Ophthalmol Vis Sci. 2015;56:6523–30.CrossRef Kovacs K, Marra KV, Yu G, Wagley S, Ma J, Teague GC, Nandakumar N, Lashkari K, Arroyo JG. Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Invest Ophthalmol Vis Sci. 2015;56:6523–30.CrossRef
13.
go back to reference Van Bergen T, Jonckx B, Hollanders K, Sijnave D, Van de Velde S, Vandewalle E, Moons L, Stassen JM, Stalmans I. Inhibition of placental growth factor improves surgical outcome of glaucoma surgery. J Cell Mol Med. 2013;17:1632–43.CrossRef Van Bergen T, Jonckx B, Hollanders K, Sijnave D, Van de Velde S, Vandewalle E, Moons L, Stassen JM, Stalmans I. Inhibition of placental growth factor improves surgical outcome of glaucoma surgery. J Cell Mol Med. 2013;17:1632–43.CrossRef
14.
go back to reference Rakic JM, Lambert V, Devy L, Luttun A, Carmeliet P, Claes C, Nguyen L, Foidart JM, Noel A, Munaut C. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3186–93.CrossRef Rakic JM, Lambert V, Devy L, Luttun A, Carmeliet P, Claes C, Nguyen L, Foidart JM, Noel A, Munaut C. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3186–93.CrossRef
15.
go back to reference Pongsachareonnont P, Mak MYK, Hurst CP, Lam WC. Neovascular age-related macular degeneration: intraocular inflammatory cytokines in the poor responder to ranibizumab treatment. Clin Ophthalmol. 2018;12:1877–85.CrossRef Pongsachareonnont P, Mak MYK, Hurst CP, Lam WC. Neovascular age-related macular degeneration: intraocular inflammatory cytokines in the poor responder to ranibizumab treatment. Clin Ophthalmol. 2018;12:1877–85.CrossRef
16.
go back to reference Huo X, Li Y, Jiang Y, Sun X, Gu L, Guo W, Sun D. Inhibition of ocular neovascularization by co-inhibition of VEGF-A and PLGF. Cell Physiol Biochem. 2015;35:1787–96.CrossRef Huo X, Li Y, Jiang Y, Sun X, Gu L, Guo W, Sun D. Inhibition of ocular neovascularization by co-inhibition of VEGF-A and PLGF. Cell Physiol Biochem. 2015;35:1787–96.CrossRef
17.
go back to reference Crespo-Garcia S, Corkhill C, Roubeix C, Davids AM, Kociok N, Strauss O, Joussen AM, Reichhart N. Inhibition of placenta growth factor reduces subretinal mononuclear phagocyte accumulation in choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58:4997–5006.CrossRef Crespo-Garcia S, Corkhill C, Roubeix C, Davids AM, Kociok N, Strauss O, Joussen AM, Reichhart N. Inhibition of placenta growth factor reduces subretinal mononuclear phagocyte accumulation in choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58:4997–5006.CrossRef
18.
go back to reference Tarallo V, Bogdanovich S, Hirano Y, Tudisco L, Zentilin L, Giacca M, Ambati J, De Falco S. Inhibition of choroidal and corneal pathologic neovascularization by Plgf1-de gene transfer. Invest Ophthalmol Vis Sci. 2012;53:7989–96.CrossRef Tarallo V, Bogdanovich S, Hirano Y, Tudisco L, Zentilin L, Giacca M, Ambati J, De Falco S. Inhibition of choroidal and corneal pathologic neovascularization by Plgf1-de gene transfer. Invest Ophthalmol Vis Sci. 2012;53:7989–96.CrossRef
19.
go back to reference Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA. VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol. 2003;195:241–8.CrossRef Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA. VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol. 2003;195:241–8.CrossRef
20.
go back to reference Miyamoto N, de Kozak Y, Jeanny JC, Glotin A, Mascarelli F, Massin P, BenEzra D, Behar-Cohen F. Placental growth factor-1 and epithelial haemato-retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia. 2007;50:461–70.CrossRef Miyamoto N, de Kozak Y, Jeanny JC, Glotin A, Mascarelli F, Massin P, BenEzra D, Behar-Cohen F. Placental growth factor-1 and epithelial haemato-retinal barrier breakdown: potential implication in the pathogenesis of diabetic retinopathy. Diabetologia. 2007;50:461–70.CrossRef
21.
go back to reference Miyamoto N, de Kozak Y, Normand N, Courtois Y, Jeanny JC, Benezra D, Behar-Cohen F. PlGF-1 and VEGFR-1 pathway regulation of the external epithelial hemato-ocular barrier. A model for retinal edema. Ophthalmic Res. 2008;40:203–7.CrossRef Miyamoto N, de Kozak Y, Normand N, Courtois Y, Jeanny JC, Benezra D, Behar-Cohen F. PlGF-1 and VEGFR-1 pathway regulation of the external epithelial hemato-ocular barrier. A model for retinal edema. Ophthalmic Res. 2008;40:203–7.CrossRef
22.
go back to reference Van Bergen T, Hu TT, Etienne I, Reyns GE, Moons L, Feyen JHM. Neutralization of placental growth factor as a novel treatment option in diabetic retinopathy. Exp Eye Res. 2017;165:136–50.CrossRef Van Bergen T, Hu TT, Etienne I, Reyns GE, Moons L, Feyen JHM. Neutralization of placental growth factor as a novel treatment option in diabetic retinopathy. Exp Eye Res. 2017;165:136–50.CrossRef
23.
go back to reference Perelman N, Selvaraj SK, Batra S, Luck LR, Erdreich-Epstein A, Coates TD, Kalra VK, Malik P. Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood. 2003;102:1506–14.CrossRef Perelman N, Selvaraj SK, Batra S, Luck LR, Erdreich-Epstein A, Coates TD, Kalra VK, Malik P. Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood. 2003;102:1506–14.CrossRef
24.
go back to reference Adini A, Kornaga T, Firoozbakht F, Benjamin LE. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res. 2002;62:2749–52.PubMed Adini A, Kornaga T, Firoozbakht F, Benjamin LE. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res. 2002;62:2749–52.PubMed
25.
go back to reference Luckoff A, Scholz R, Sennlaub F, Xu H, Langmann T. Comprehensive analysis of mouse retinal mononuclear phagocytes. Nat Protoc. 2017;12:1136–50.CrossRef Luckoff A, Scholz R, Sennlaub F, Xu H, Langmann T. Comprehensive analysis of mouse retinal mononuclear phagocytes. Nat Protoc. 2017;12:1136–50.CrossRef
26.
go back to reference Gross-Thebing T, Paksa A, Raz E. Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biol. 2014;12:55.CrossRef Gross-Thebing T, Paksa A, Raz E. Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biol. 2014;12:55.CrossRef
27.
go back to reference Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3586–92.CrossRef Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3586–92.CrossRef
28.
go back to reference Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J. Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3578–85.CrossRef Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J. Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44:3578–85.CrossRef
29.
go back to reference Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:171–9.CrossRef Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:171–9.CrossRef
30.
go back to reference MacDonald DA, Martin J, Muthusamy KK, Luo JK, Pyles E, Rafique A, Huang T, Potocky T, Liu Y, Cao J, et al. Aflibercept exhibits VEGF binding stoichiometry distinct from bevacizumab and does not support formation of immune-like complexes. Angiogenesis. 2016;19:389–406.CrossRef MacDonald DA, Martin J, Muthusamy KK, Luo JK, Pyles E, Rafique A, Huang T, Potocky T, Liu Y, Cao J, et al. Aflibercept exhibits VEGF binding stoichiometry distinct from bevacizumab and does not support formation of immune-like complexes. Angiogenesis. 2016;19:389–406.CrossRef
31.
go back to reference Zhao W, McCallum SA, Xiao Z, Zhang F, Linhardt RJ. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Biosci Rep. 2012;32:71–81.CrossRef Zhao W, McCallum SA, Xiao Z, Zhang F, Linhardt RJ. Binding affinities of vascular endothelial growth factor (VEGF) for heparin-derived oligosaccharides. Biosci Rep. 2012;32:71–81.CrossRef
32.
go back to reference Nagineni CN, Kommineni VK, William A, Detrick B, Hooks JJ. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol. 2012;227:116–26.CrossRef Nagineni CN, Kommineni VK, William A, Detrick B, Hooks JJ. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol. 2012;227:116–26.CrossRef
33.
go back to reference Tseng WA, Thein T, Kinnunen K, Lashkari K, Gregory MS, D'Amore PA, Ksander BR. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54:110–20.CrossRef Tseng WA, Thein T, Kinnunen K, Lashkari K, Gregory MS, D'Amore PA, Ksander BR. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2013;54:110–20.CrossRef
34.
go back to reference Mohr LK, Hoffmann AV, Brandstetter C, Holz FG, Krohne TU. Effects of inflammasome activation on secretion of inflammatory cytokines and vascular endothelial growth factor by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:6404–13.CrossRef Mohr LK, Hoffmann AV, Brandstetter C, Holz FG, Krohne TU. Effects of inflammasome activation on secretion of inflammatory cytokines and vascular endothelial growth factor by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:6404–13.CrossRef
35.
go back to reference Levy O, Lavalette S, Hu SJ, Housset M, Raoul W, Eandi C, Sahel JA, Sullivan PM, Guillonneau X, Sennlaub F. APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci. 2015;35:13568–76.CrossRef Levy O, Lavalette S, Hu SJ, Housset M, Raoul W, Eandi C, Sahel JA, Sullivan PM, Guillonneau X, Sennlaub F. APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci. 2015;35:13568–76.CrossRef
36.
go back to reference Izawa H, Inoue Y, Ohno Y, Ojino K, Tsuruma K, Shimazawa M, Hara H. Protective effects of antiplacental growth factor antibody against light-induced retinal damage in mice. Invest Ophthalmol Vis Sci. 2015;56:6914–24.CrossRef Izawa H, Inoue Y, Ohno Y, Ojino K, Tsuruma K, Shimazawa M, Hara H. Protective effects of antiplacental growth factor antibody against light-induced retinal damage in mice. Invest Ophthalmol Vis Sci. 2015;56:6914–24.CrossRef
37.
go back to reference Kuse Y, Takahashi K, Inoue Y, Izawa H, Nakamura S, Shimazawa M, Hara H. Intravitreal aflibercept protects photoreceptors of mice against excessive light exposure. J Pharmacol Sci. 2018;137:407–11.CrossRef Kuse Y, Takahashi K, Inoue Y, Izawa H, Nakamura S, Shimazawa M, Hara H. Intravitreal aflibercept protects photoreceptors of mice against excessive light exposure. J Pharmacol Sci. 2018;137:407–11.CrossRef
38.
go back to reference Parisi L, Fuhrer R, Zinkernagel M, Enzmann V. Ranibizumab and bevacizumab but not aflibercept inhibit proliferation of primary human retinal pigment epithelium in vitro. Ophthalmologica. 2018. p. 1–6. https://doi.org/10.1159/000490430. [Epub ahead of print]. Parisi L, Fuhrer R, Zinkernagel M, Enzmann V. Ranibizumab and bevacizumab but not aflibercept inhibit proliferation of primary human retinal pigment epithelium in vitro. Ophthalmologica. 2018. p. 1–6. https://​doi.​org/​10.​1159/​000490430. [Epub ahead of print].
39.
go back to reference Zhang Y, Chioreso C, Schweizer ML, Abramoff MD. Effects of aflibercept for neovascular age-related macular degeneration: a systematic review and meta-analysis of observational comparative studies. Invest Ophthalmol Vis Sci. 2017;58:5616–27.PubMedPubMedCentral Zhang Y, Chioreso C, Schweizer ML, Abramoff MD. Effects of aflibercept for neovascular age-related macular degeneration: a systematic review and meta-analysis of observational comparative studies. Invest Ophthalmol Vis Sci. 2017;58:5616–27.PubMedPubMedCentral
Metadata
Title
Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina
Authors
Carsten Balser
Anne Wolf
Marc Herb
Thomas Langmann
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2019
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-019-1419-2

Other articles of this Issue 1/2019

Journal of Neuroinflammation 1/2019 Go to the issue