Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 10/2023

06-07-2023 | KNEE

Machine learning can accurately predict risk factors for all-cause reoperation after ACLR: creating a clinical tool to improve patient counseling and outcomes

Authors: Quinn J. Johnson, Mohamed S. Jabal, Alexandra M. Arguello, Yining Lu, Kevin Jurgensmeier, Bruce A. Levy, Christopher L. Camp, Aaron J. Krych

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 10/2023

Login to get access

Abstract

Purpose

Identifying predictive factors for all-cause reoperation after anterior cruciate ligament reconstruction could inform clinical decision making and improve risk mitigation. The primary purposes of this study are to (1) determine the incidence of all-cause reoperation after anterior cruciate ligament reconstruction, (2) identify predictors of reoperation after anterior cruciate ligament reconstruction using machine learning methodology, and (3) compare the predictive capacity of the machine learning methods to that of traditional logistic regression.

Methods

A longitudinal geographical database was utilized to identify patients with a diagnosis of new anterior cruciate ligament injury. Eight machine learning models were appraised on their ability to predict all-cause reoperation after anterior cruciate ligament reconstruction. Model performance was evaluated via area under the receiver operating characteristics curve. To explore modeling interpretability and radiomic feature influence on the predictions, we utilized a game-theory-based method through SHapley Additive exPlanations.

Results

A total of 1400 patients underwent anterior cruciate ligament reconstruction with a mean postoperative follow-up of 9 years. Two-hundred and eighteen (16%) patients experienced a reoperation after anterior cruciate ligament reconstruction, of which 6% of these were revision ACL reconstruction. SHapley Additive exPlanations plots identified the following risk factors as predictive for all-cause reoperation: diagnosis of systemic inflammatory disease, distal tear location, concomitant medial collateral ligament repair, higher visual analog scale pain score prior to surgery, hamstring autograft, tibial fixation via radial expansion device, younger age at initial injury, and concomitant meniscal repair. Pertinent negatives, when compared to previous studies, included sex and timing of surgery. XGBoost was the best-performing model (area under the receiver operating characteristics curve of 0.77) and outperformed logistic regression in this regard.

Conclusions

All-cause reoperation after anterior cruciate ligament reconstruction occurred at a rate of 16%. Machine learning models outperformed traditional statistics and identified diagnosis of systemic inflammatory disease, distal tear location, concomitant medial collateral ligament repair, higher visual analog scale pain score prior to surgery, hamstring autograft, tibial fixation via radial expansion device, younger age at initial injury, and concomitant meniscal repair as predictive risk factors for reoperation. Pertinent negatives, when compared to previous studies, included sex and timing of surgery. These models will allow surgeons to tabulate individualized risk for future reoperation for patients undergoing anterior cruciate ligament reconstruction.

Level of evidence

III.
Appendix
Available only for authorised users
Literature
1.
go back to reference Allahabadi S, Mittal A, Coughlan MJ, Kim AE, Hung NJ, Pandya NK (2022) Outcomes, including graft tears, contralateral anterior cruciate ligament tears, and all-cause ipsilateral knee operations, are similar for adult-type, transphyseal, and partial transphyseal anterior cruciate ligament reconstruction using hamstring autograft in pediatric and adolescent patients. Arthrosc Sports Med Rehabil 4:e1465–e1474PubMedPubMedCentralCrossRef Allahabadi S, Mittal A, Coughlan MJ, Kim AE, Hung NJ, Pandya NK (2022) Outcomes, including graft tears, contralateral anterior cruciate ligament tears, and all-cause ipsilateral knee operations, are similar for adult-type, transphyseal, and partial transphyseal anterior cruciate ligament reconstruction using hamstring autograft in pediatric and adolescent patients. Arthrosc Sports Med Rehabil 4:e1465–e1474PubMedPubMedCentralCrossRef
2.
go back to reference Bayliss L, Jones LD (2019) The role of artificial intelligence and machine learning in predicting orthopaedic outcomes. Bone Joint J 101-b:1476–1478PubMedCrossRef Bayliss L, Jones LD (2019) The role of artificial intelligence and machine learning in predicting orthopaedic outcomes. Bone Joint J 101-b:1476–1478PubMedCrossRef
3.
go back to reference Bowyer K, Chawla N, Hall L, Kegelmeyer WP (2002) SMOTE: synthetic minority oversampling technique. J Artif Intell Res 16:321–357CrossRef Bowyer K, Chawla N, Hall L, Kegelmeyer WP (2002) SMOTE: synthetic minority oversampling technique. J Artif Intell Res 16:321–357CrossRef
4.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594PubMedCrossRef Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 350:g7594PubMedCrossRef
5.
6.
go back to reference Csintalan RP, Inacio MC, Funahashi TT, Maletis GB (2014) Risk factors of subsequent operations after primary anterior cruciate ligament reconstruction. Am J Sports Med 42:619–625PubMedCrossRef Csintalan RP, Inacio MC, Funahashi TT, Maletis GB (2014) Risk factors of subsequent operations after primary anterior cruciate ligament reconstruction. Am J Sports Med 42:619–625PubMedCrossRef
7.
go back to reference Gramfort A, Michel V, Pedregosa F, Thirion B, Varoquaux G (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Gramfort A, Michel V, Pedregosa F, Thirion B, Varoquaux G (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
8.
go back to reference Haeberle HS, Helm JM, Navarro SM, Karnuta JM, Schaffer JL, Callaghan JJ et al (2019) Artificial intelligence and machine learning in lower extremity arthroplasty: a review. J Arthroplasty 34:2201–2203PubMedCrossRef Haeberle HS, Helm JM, Navarro SM, Karnuta JM, Schaffer JL, Callaghan JJ et al (2019) Artificial intelligence and machine learning in lower extremity arthroplasty: a review. J Arthroplasty 34:2201–2203PubMedCrossRef
9.
go back to reference Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT (2018) Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002–2014. Sports Health 10:523–531PubMedPubMedCentralCrossRef Herzog MM, Marshall SW, Lund JL, Pate V, Mack CD, Spang JT (2018) Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002–2014. Sports Health 10:523–531PubMedPubMedCentralCrossRef
10.
go back to reference Hughes JD, Hughes JL, Bartley JH, Hamilton WP, Brennan KL (2017) Infection rates in arthroscopic versus open rotator cuff repair. Orthop J Sports Med 5:2325967117715416PubMedPubMedCentralCrossRef Hughes JD, Hughes JL, Bartley JH, Hamilton WP, Brennan KL (2017) Infection rates in arthroscopic versus open rotator cuff repair. Orthop J Sports Med 5:2325967117715416PubMedPubMedCentralCrossRef
11.
go back to reference Huque MH, Carlin JB, Simpson JA, Lee KJ (2018) A comparison of multiple imputation methods for missing data in longitudinal studies. BMC Med Res Methodol 18:168PubMedPubMedCentralCrossRef Huque MH, Carlin JB, Simpson JA, Lee KJ (2018) A comparison of multiple imputation methods for missing data in longitudinal studies. BMC Med Res Methodol 18:168PubMedPubMedCentralCrossRef
12.
go back to reference Janssen RPA, van Melick N, van Mourik JBA, Reijman M, van Rhijn LW (2018) ACL reconstruction with hamstring tendon autograft and accelerated brace-free rehabilitation: a systematic review of clinical outcomes. BMJ Open Sport Exerc Med 4:e000301PubMedPubMedCentralCrossRef Janssen RPA, van Melick N, van Mourik JBA, Reijman M, van Rhijn LW (2018) ACL reconstruction with hamstring tendon autograft and accelerated brace-free rehabilitation: a systematic review of clinical outcomes. BMJ Open Sport Exerc Med 4:e000301PubMedPubMedCentralCrossRef
13.
go back to reference Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260PubMedCrossRef Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260PubMedCrossRef
14.
go back to reference Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Moon Consortium, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 43:1583–1590PubMedPubMedCentralCrossRef Kaeding CC, Pedroza AD, Reinke EK, Huston LJ, Moon Consortium, Spindler KP (2015) Risk factors and predictors of subsequent ACL injury in either knee after ACL reconstruction: prospective analysis of 2488 primary ACL reconstructions from the MOON cohort. Am J Sports Med 43:1583–1590PubMedPubMedCentralCrossRef
15.
go back to reference Ko S, Pareek A, Ro D, Lu Y, Camp C, Martin RK et al (2022) Artificial intelligence in orthopedics: three strategies for deep learning with orthopedic specific imaging. Knee Surg Sports Traumatol Arthrosc 30:758–761PubMedCrossRef Ko S, Pareek A, Ro D, Lu Y, Camp C, Martin RK et al (2022) Artificial intelligence in orthopedics: three strategies for deep learning with orthopedic specific imaging. Knee Surg Sports Traumatol Arthrosc 30:758–761PubMedCrossRef
16.
go back to reference Kunze KN, Polce EM, Clapp I, Nwachukwu BU, Chahla J, Nho SJ (2021) Machine learning algorithms predict functional improvement after hip arthroscopy for femoroacetabular impingement syndrome in athletes. J Bone Joint Surg Am 103:1055–1062PubMedCrossRef Kunze KN, Polce EM, Clapp I, Nwachukwu BU, Chahla J, Nho SJ (2021) Machine learning algorithms predict functional improvement after hip arthroscopy for femoroacetabular impingement syndrome in athletes. J Bone Joint Surg Am 103:1055–1062PubMedCrossRef
17.
go back to reference Kunze KN, Polce EM, Ranawat AS, Randsborg P-H, Williams RJ, Allen AA et al (2021) Application of machine learning algorithms to predict clinically meaningful improvement after arthroscopic anterior cruciate ligament reconstruction. Orthop J Sports Med 9:23259671211046576PubMedPubMedCentralCrossRef Kunze KN, Polce EM, Ranawat AS, Randsborg P-H, Williams RJ, Allen AA et al (2021) Application of machine learning algorithms to predict clinically meaningful improvement after arthroscopic anterior cruciate ligament reconstruction. Orthop J Sports Med 9:23259671211046576PubMedPubMedCentralCrossRef
18.
go back to reference Lemme NJ, Yang DS, Barrow B, O’Donnell R, Daniels AH, Cruz AI (2021) Risk factors for failure after anterior cruciate ligament reconstruction in a pediatric population: a prediction algorithm. Orthop J Sports Med 9:2325967121991165PubMedPubMedCentralCrossRef Lemme NJ, Yang DS, Barrow B, O’Donnell R, Daniels AH, Cruz AI (2021) Risk factors for failure after anterior cruciate ligament reconstruction in a pediatric population: a prediction algorithm. Orthop J Sports Med 9:2325967121991165PubMedPubMedCentralCrossRef
19.
go back to reference Lian Q, Lian Y, Li K, Yang Q, Li K, Zheng Y et al (2022) Complications of primary total hip arthroplasty among patients with rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and primary osteoarthritis. BMC Musculoskelet 23:924CrossRef Lian Q, Lian Y, Li K, Yang Q, Li K, Zheng Y et al (2022) Complications of primary total hip arthroplasty among patients with rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and primary osteoarthritis. BMC Musculoskelet 23:924CrossRef
20.
go back to reference Lord L, Cristiani R, Edman G, Forssblad M, Stålman A (2020) One sixth of primary anterior cruciate ligament reconstructions may undergo reoperation due to complications or new injuries within 2 years. Knee Surg Sports Traumatol Arthrosc 28:2478–2485PubMedPubMedCentralCrossRef Lord L, Cristiani R, Edman G, Forssblad M, Stålman A (2020) One sixth of primary anterior cruciate ligament reconstructions may undergo reoperation due to complications or new injuries within 2 years. Knee Surg Sports Traumatol Arthrosc 28:2478–2485PubMedPubMedCentralCrossRef
21.
go back to reference Lu Y, Forlenza E, Wilbur R, Lavoie-Gagne O, Fu M, Yanke A et al (2021) Machine-learning model successfully predicts patients at risk for prolonged postoperative opioid use following elective knee arthroscopy. Knee Surg Sports Traumatol Arthrosc 30:762–772PubMedCrossRef Lu Y, Forlenza E, Wilbur R, Lavoie-Gagne O, Fu M, Yanke A et al (2021) Machine-learning model successfully predicts patients at risk for prolonged postoperative opioid use following elective knee arthroscopy. Knee Surg Sports Traumatol Arthrosc 30:762–772PubMedCrossRef
22.
go back to reference Lu Y, Pareek A, Wilbur RR, Leland DP, Krych AJ, Camp CL (2021) understanding anterior shoulder instability through machine learning: new models that predict recurrence, progression to surgery, and development of arthritis. Orthop J Sports Med 9:23259671211053330PubMedPubMedCentralCrossRef Lu Y, Pareek A, Wilbur RR, Leland DP, Krych AJ, Camp CL (2021) understanding anterior shoulder instability through machine learning: new models that predict recurrence, progression to surgery, and development of arthritis. Orthop J Sports Med 9:23259671211053330PubMedPubMedCentralCrossRef
23.
go back to reference Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T et al (2018) Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2:749–760PubMedPubMedCentralCrossRef Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T et al (2018) Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2:749–760PubMedPubMedCentralCrossRef
24.
go back to reference Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C et al (2016) Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res 18:e323PubMedPubMedCentralCrossRef Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C et al (2016) Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res 18:e323PubMedPubMedCentralCrossRef
25.
go back to reference Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG (2009) Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 91:2321–2328PubMedCrossRef Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG (2009) Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 91:2321–2328PubMedCrossRef
26.
go back to reference Ma L, Fan S (2017) CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinform 18:169CrossRef Ma L, Fan S (2017) CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests. BMC Bioinform 18:169CrossRef
27.
go back to reference Magnussen RA, Meschbach NT, Kaeding CC, Wright RW, Spindler KP (2015) ACL graft and contralateral ACL tear risk within ten years following reconstruction: a systematic review. J Bone Joint Surg Am 3:e3 Magnussen RA, Meschbach NT, Kaeding CC, Wright RW, Spindler KP (2015) ACL graft and contralateral ACL tear risk within ten years following reconstruction: a systematic review. J Bone Joint Surg Am 3:e3
28.
go back to reference Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM et al (2022) Predicting anterior cruciate ligament reconstruction revision: a machine learning analysis utilizing the Norwegian knee ligament register. J Bone Joint Surg Am 104:145–153PubMedCrossRef Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM et al (2022) Predicting anterior cruciate ligament reconstruction revision: a machine learning analysis utilizing the Norwegian knee ligament register. J Bone Joint Surg Am 104:145–153PubMedCrossRef
30.
go back to reference Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM et al (2022) Machine learning algorithm to predict anterior cruciate ligament revision demonstrates external validity. Knee Surg Sports Traumatol Arthrosc 30:368–375PubMedPubMedCentralCrossRef Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM et al (2022) Machine learning algorithm to predict anterior cruciate ligament revision demonstrates external validity. Knee Surg Sports Traumatol Arthrosc 30:368–375PubMedPubMedCentralCrossRef
31.
go back to reference Martini ML, Neifert SN, Gal JS, Oermann EK, Gilligan JT, Caridi JM (2021) Drivers of prolonged hospitalization following spine surgery: a game-theory-based approach to explaining machine learning models. J Bone Joint Surg Am 103:64–73PubMedCrossRef Martini ML, Neifert SN, Gal JS, Oermann EK, Gilligan JT, Caridi JM (2021) Drivers of prolonged hospitalization following spine surgery: a game-theory-based approach to explaining machine learning models. J Bone Joint Surg Am 103:64–73PubMedCrossRef
32.
go back to reference Moons KG, Donders RA, Stijnen T, Harrell FE Jr (2006) Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol 59:1092–1101PubMedCrossRef Moons KG, Donders RA, Stijnen T, Harrell FE Jr (2006) Using the outcome for imputation of missing predictor values was preferred. J Clin Epidemiol 59:1092–1101PubMedCrossRef
33.
go back to reference Nester JR, Torino D, Sylvestre D, Young A, Ney SM, Fernandez MM et al (2022) Risk of reoperation after primary anterior cruciate ligament reconstruction in children and adolescents. J Orthop Surg 30:10225536221122340CrossRef Nester JR, Torino D, Sylvestre D, Young A, Ney SM, Fernandez MM et al (2022) Risk of reoperation after primary anterior cruciate ligament reconstruction in children and adolescents. J Orthop Surg 30:10225536221122340CrossRef
34.
go back to reference Pedersen AB, Mikkelsen EM, Cronin-Fenton D, Kristensen NR, Pham TM, Pedersen L et al (2017) Missing data and multiple imputation in clinical epidemiological research. Clin Epidemiol 9:157–166PubMedPubMedCentralCrossRef Pedersen AB, Mikkelsen EM, Cronin-Fenton D, Kristensen NR, Pham TM, Pedersen L et al (2017) Missing data and multiple imputation in clinical epidemiological research. Clin Epidemiol 9:157–166PubMedPubMedCentralCrossRef
35.
go back to reference Ramkumar PN, Karnuta JM, Haeberle HS, Owusu-Akyaw KA, Warner TS, Rodeo SA et al (2021) Association between preoperative mental health and clinically meaningful outcomes after osteochondral allograft for cartilage defects of the knee: a machine learning analysis. Am J Sports Med 49:948–957PubMedCrossRef Ramkumar PN, Karnuta JM, Haeberle HS, Owusu-Akyaw KA, Warner TS, Rodeo SA et al (2021) Association between preoperative mental health and clinically meaningful outcomes after osteochondral allograft for cartilage defects of the knee: a machine learning analysis. Am J Sports Med 49:948–957PubMedCrossRef
36.
go back to reference Saithna A, Thaunat M, Delaloye JR, Ouanezar H, Fayard JM, Sonnery-Cottet B (2018) Combined ACL and anterolateral ligament reconstruction. JBJS Essent Surg Tech 8:e2PubMedPubMedCentralCrossRef Saithna A, Thaunat M, Delaloye JR, Ouanezar H, Fayard JM, Sonnery-Cottet B (2018) Combined ACL and anterolateral ligament reconstruction. JBJS Essent Surg Tech 8:e2PubMedPubMedCentralCrossRef
37.
go back to reference Sanders TL, MaraditKremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA et al (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44:1502–1507PubMedCrossRef Sanders TL, MaraditKremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA et al (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44:1502–1507PubMedCrossRef
38.
go back to reference Spragg LM, Prentice HA, Morris A, Funahashi TT, Maletis GB, Csintalan RP (2019) Femoral-tibial fixation affects risk of revision and reoperation after anterior cruciate ligament reconstruction using hamstring autograft. Knee Surg Sports Traumatol Arthrosc 27:3518–3526PubMedCrossRef Spragg LM, Prentice HA, Morris A, Funahashi TT, Maletis GB, Csintalan RP (2019) Femoral-tibial fixation affects risk of revision and reoperation after anterior cruciate ligament reconstruction using hamstring autograft. Knee Surg Sports Traumatol Arthrosc 27:3518–3526PubMedCrossRef
39.
go back to reference Stekhoven DJ, Buhlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118PubMedCrossRef Stekhoven DJ, Buhlmann P (2012) MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118PubMedCrossRef
40.
go back to reference Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG et al (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338:b2393PubMedPubMedCentralCrossRef Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG et al (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338:b2393PubMedPubMedCentralCrossRef
41.
go back to reference Thaunat M, Clowez G, Saithna A, Cavalier M, Choudja E, Vieira TD et al (2017) Reoperation rates after combined anterior cruciate ligament and anterolateral ligament reconstruction: a series of 548 patients from the SANTI study group with a minimum follow-up of 2 years. Am J Sports Med 45:2569–2577PubMedCrossRef Thaunat M, Clowez G, Saithna A, Cavalier M, Choudja E, Vieira TD et al (2017) Reoperation rates after combined anterior cruciate ligament and anterolateral ligament reconstruction: a series of 548 patients from the SANTI study group with a minimum follow-up of 2 years. Am J Sports Med 45:2569–2577PubMedCrossRef
42.
go back to reference Ushio T, Okazaki K, Mizu-Uchi H, Hamai S, Akasaki Y, Nakashima Y (2017) Anterior cruciate ligament reconstruction in a patient who has received systemic steroids for autoimmune disease. Asia-Pac J Sports Med Arthrosc Rehabil Technol 11:12–14PubMedPubMedCentral Ushio T, Okazaki K, Mizu-Uchi H, Hamai S, Akasaki Y, Nakashima Y (2017) Anterior cruciate ligament reconstruction in a patient who has received systemic steroids for autoimmune disease. Asia-Pac J Sports Med Arthrosc Rehabil Technol 11:12–14PubMedPubMedCentral
43.
go back to reference Van Buuren S (2018) Flexible imputation of missing data. CRC Press, Boca RatonCrossRef Van Buuren S (2018) Flexible imputation of missing data. CRC Press, Boca RatonCrossRef
44.
go back to reference van Dijck RA, Saris DB, Willems JW, Fievez AW (2008) Additional surgery after anterior cruciate ligament reconstruction: can we improve technical aspects of the initial procedure? Arthroscopy 24:88–95PubMedCrossRef van Dijck RA, Saris DB, Willems JW, Fievez AW (2008) Additional surgery after anterior cruciate ligament reconstruction: can we improve technical aspects of the initial procedure? Arthroscopy 24:88–95PubMedCrossRef
45.
46.
go back to reference Young EP, Chan PH, Prentice HA, Amar K, Hurvitz AP, Khan NA (2021) Aseptic revision and reoperation risks after meniscectomy at the time of anterior cruciate ligament reconstruction. Am J Sports Med 49:1296–1304PubMedCrossRef Young EP, Chan PH, Prentice HA, Amar K, Hurvitz AP, Khan NA (2021) Aseptic revision and reoperation risks after meniscectomy at the time of anterior cruciate ligament reconstruction. Am J Sports Med 49:1296–1304PubMedCrossRef
47.
go back to reference Zhang Z, Ho KM, Hong Y (2019) Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care 23:112PubMedPubMedCentralCrossRef Zhang Z, Ho KM, Hong Y (2019) Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Crit Care 23:112PubMedPubMedCentralCrossRef
Metadata
Title
Machine learning can accurately predict risk factors for all-cause reoperation after ACLR: creating a clinical tool to improve patient counseling and outcomes
Authors
Quinn J. Johnson
Mohamed S. Jabal
Alexandra M. Arguello
Yining Lu
Kevin Jurgensmeier
Bruce A. Levy
Christopher L. Camp
Aaron J. Krych
Publication date
06-07-2023
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 10/2023
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-023-07497-7

Other articles of this Issue 10/2023

Knee Surgery, Sports Traumatology, Arthroscopy 10/2023 Go to the issue