Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2012

Open Access 01-12-2012 | Research

Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer

Authors: John R Hornick, Suwanna Vangveravong, Dirk Spitzer, Carmen Abate, Francesco Berardi, Peter Goedegebuure, Robert H Mach, William G Hawkins

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2012

Login to get access

Abstract

Background

Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer.

Results

Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43.

Conclusions

Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bowen WD, DeCosta B, Hellewell SB, Thurkauf A, Walker JM, Rice KC: Characterization of [3 H] (+)-pentazocine, a highly selective sigma ligand. Prog Clin Biol Res. 1990, 328: 117-120.PubMed Bowen WD, DeCosta B, Hellewell SB, Thurkauf A, Walker JM, Rice KC: Characterization of [3 H] (+)-pentazocine, a highly selective sigma ligand. Prog Clin Biol Res. 1990, 328: 117-120.PubMed
2.
go back to reference Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD: Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol. 1994, 268: 9-18. 10.1016/0922-4106(94)90115-5.CrossRefPubMed Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD: Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol. 1994, 268: 9-18. 10.1016/0922-4106(94)90115-5.CrossRefPubMed
3.
go back to reference Xu J, Zeng C, Chu W, Pan F, Rothfuss JM, Zhang F, Tu Z, Zhou D, Zeng D, Vangveravong S, et al: Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun. 2011, 2: 380-PubMedCentralCrossRefPubMed Xu J, Zeng C, Chu W, Pan F, Rothfuss JM, Zhang F, Tu Z, Zhou D, Zeng D, Vangveravong S, et al: Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun. 2011, 2: 380-PubMedCentralCrossRefPubMed
4.
go back to reference Mir SU, Ahmed IS, Arnold S, Craven RJ: Elevated Pgrmc1 (progesterone receptor membrane component 1)/sigma-2 receptor levels in lung tumors and plasma from lung cancer patients. Int J Cancer. 2011 Mir SU, Ahmed IS, Arnold S, Craven RJ: Elevated Pgrmc1 (progesterone receptor membrane component 1)/sigma-2 receptor levels in lung tumors and plasma from lung cancer patients. Int J Cancer. 2011
5.
go back to reference van Waarde A, Rybczynska AA, Ramakrishnan N, Ishiwata K, Elsinga PH, Dierckx RA: Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr Pharm Des. 2010, 16: 3519-3537. 10.2174/138161210793563365.CrossRefPubMed van Waarde A, Rybczynska AA, Ramakrishnan N, Ishiwata K, Elsinga PH, Dierckx RA: Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands. Curr Pharm Des. 2010, 16: 3519-3537. 10.2174/138161210793563365.CrossRefPubMed
6.
go back to reference Mach RH, Wheeler KT: Development of molecular probes for imaging sigma-2 receptors in vitro and in vivo. Cent Nerv Syst Agents Med Chem. 2009, 9: 230-245.PubMedCentralCrossRefPubMed Mach RH, Wheeler KT: Development of molecular probes for imaging sigma-2 receptors in vitro and in vivo. Cent Nerv Syst Agents Med Chem. 2009, 9: 230-245.PubMedCentralCrossRefPubMed
7.
go back to reference Wheeler KT, Wang LM, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH: Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer. 2000, 82: 1223-1232. 10.1054/bjoc.1999.1067.PubMedCentralCrossRefPubMed Wheeler KT, Wang LM, Wallen CA, Childers SR, Cline JM, Keng PC, Mach RH: Sigma-2 receptors as a biomarker of proliferation in solid tumours. Br J Cancer. 2000, 82: 1223-1232. 10.1054/bjoc.1999.1067.PubMedCentralCrossRefPubMed
8.
go back to reference Kashiwagi H, McDunn JE, Simon PO, Goedegebuure PS, Xu J, Jones L, Chang K, Johnston F, Trinkaus K, Hotchkiss RS, et al: Selective sigma-2 ligands preferentially bind to pancreatic adenocarcinomas: applications in diagnostic imaging and therapy. Mol Cancer. 2007, 6: 48-10.1186/1476-4598-6-48.PubMedCentralCrossRefPubMed Kashiwagi H, McDunn JE, Simon PO, Goedegebuure PS, Xu J, Jones L, Chang K, Johnston F, Trinkaus K, Hotchkiss RS, et al: Selective sigma-2 ligands preferentially bind to pancreatic adenocarcinomas: applications in diagnostic imaging and therapy. Mol Cancer. 2007, 6: 48-10.1186/1476-4598-6-48.PubMedCentralCrossRefPubMed
9.
go back to reference Kashiwagi H, McDunn JE, Simon PO, Goedegebuure PS, Vangveravong S, Chang K, Hotchkiss RS, Mach RH, Hawkins WG: Sigma-2 receptor ligands potentiate conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma. J Transl Med. 2009, 7: 24-10.1186/1479-5876-7-24.PubMedCentralCrossRefPubMed Kashiwagi H, McDunn JE, Simon PO, Goedegebuure PS, Vangveravong S, Chang K, Hotchkiss RS, Mach RH, Hawkins WG: Sigma-2 receptor ligands potentiate conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma. J Transl Med. 2009, 7: 24-10.1186/1479-5876-7-24.PubMedCentralCrossRefPubMed
10.
go back to reference Hornick JR, Xu J, Vangveravong S, Tu Z, Mitchem JB, Spitzer D, Goedegebuure P, Mach RH, Hawkins WG: The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol Cancer. 2010, 9: 298-10.1186/1476-4598-9-298.PubMedCentralCrossRefPubMed Hornick JR, Xu J, Vangveravong S, Tu Z, Mitchem JB, Spitzer D, Goedegebuure P, Mach RH, Hawkins WG: The novel sigma-2 receptor ligand SW43 stabilizes pancreas cancer progression in combination with gemcitabine. Mol Cancer. 2010, 9: 298-10.1186/1476-4598-9-298.PubMedCentralCrossRefPubMed
11.
go back to reference Hazelwood S, Bowen WD: Sigma-2 receptor-mediated apoptosis in human SK-N-SH neuroblastoma cells: role of lipid rafts, caspases, and mitochondrial depolarization. 2006, Proc Amer Assoc, Cancer Res, 47- Hazelwood S, Bowen WD: Sigma-2 receptor-mediated apoptosis in human SK-N-SH neuroblastoma cells: role of lipid rafts, caspases, and mitochondrial depolarization. 2006, Proc Amer Assoc, Cancer Res, 47-
12.
go back to reference Crawford KW, Bowen WD: Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines. Cancer Res. 2002, 62: 313-322.PubMed Crawford KW, Bowen WD: Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines. Cancer Res. 2002, 62: 313-322.PubMed
13.
go back to reference Ostenfeld MS, Fehrenbacher N, Hoyer-Hansen M, Thomsen C, Farkas T, Jaattela M: Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 2005, 65: 8975-8983. 10.1158/0008-5472.CAN-05-0269.CrossRefPubMed Ostenfeld MS, Fehrenbacher N, Hoyer-Hansen M, Thomsen C, Farkas T, Jaattela M: Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 2005, 65: 8975-8983. 10.1158/0008-5472.CAN-05-0269.CrossRefPubMed
14.
go back to reference Azzariti A, Colabufo NA, Berardi F, Porcelli L, Niso M, Simone GM, Perrone R, Paradiso A: Cyclohexylpiperazine derivative PB28, a sigma2 agonist and sigma1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein, and synergizes with anthracyclines in breast cancer. Mol Cancer Ther. 2006, 5: 1807-1816. 10.1158/1535-7163.MCT-05-0402.CrossRefPubMed Azzariti A, Colabufo NA, Berardi F, Porcelli L, Niso M, Simone GM, Perrone R, Paradiso A: Cyclohexylpiperazine derivative PB28, a sigma2 agonist and sigma1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein, and synergizes with anthracyclines in breast cancer. Mol Cancer Ther. 2006, 5: 1807-1816. 10.1158/1535-7163.MCT-05-0402.CrossRefPubMed
15.
go back to reference Colabufo NA, Berardi F, Contino M, Niso M, Abate C, Perrone R, Tortorella V: Antiproliferative and cytotoxic effects of some sigma2 agonists and sigma1 antagonists in tumour cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2004, 370: 106-113.CrossRefPubMed Colabufo NA, Berardi F, Contino M, Niso M, Abate C, Perrone R, Tortorella V: Antiproliferative and cytotoxic effects of some sigma2 agonists and sigma1 antagonists in tumour cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2004, 370: 106-113.CrossRefPubMed
16.
go back to reference Zeng C, Vangveravong S, Jones LA, Hyrc K, Chang KC, Xu J, Rothfuss JM, Goldberg MP, Hotchkiss RS, Mach RH: Characterization and Evaluation of Two Novel Fluorescent Sigma-2 Receptor Ligands as Proliferation Probes. Mol Imaging. 2011 Zeng C, Vangveravong S, Jones LA, Hyrc K, Chang KC, Xu J, Rothfuss JM, Goldberg MP, Hotchkiss RS, Mach RH: Characterization and Evaluation of Two Novel Fluorescent Sigma-2 Receptor Ligands as Proliferation Probes. Mol Imaging. 2011
17.
go back to reference Abate C, Hornick JR, Spitzer D, Hawkins WG, Niso M, Perrone R, Berardi F: Fluorescent Derivatives of sigma Receptor Ligand 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]pipe razine (PB28) as a Tool for Uptake and Cellular Localization Studies in Pancreatic Tumor Cells. J Med Chem. 2011, 54: 5858-5867. 10.1021/jm200591t.PubMedCentralCrossRefPubMed Abate C, Hornick JR, Spitzer D, Hawkins WG, Niso M, Perrone R, Berardi F: Fluorescent Derivatives of sigma Receptor Ligand 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]pipe razine (PB28) as a Tool for Uptake and Cellular Localization Studies in Pancreatic Tumor Cells. J Med Chem. 2011, 54: 5858-5867. 10.1021/jm200591t.PubMedCentralCrossRefPubMed
18.
go back to reference D'Souza MP, Ambudkar SV, August JT, Maloney PC: Reconstitution of the lysosomal proton pump. Proc Natl Acad Sci USA. 1987, 84: 6980-6984. 10.1073/pnas.84.20.6980.PubMedCentralCrossRefPubMed D'Souza MP, Ambudkar SV, August JT, Maloney PC: Reconstitution of the lysosomal proton pump. Proc Natl Acad Sci USA. 1987, 84: 6980-6984. 10.1073/pnas.84.20.6980.PubMedCentralCrossRefPubMed
19.
go back to reference Hoekenga MT: The treatment of acute malaria with single oral doses of amodiaquin, chloroquine, hydroxychloroquine and pyrimethamine. Am J Tro Med Hyg. 1954, 3: 833-838. Hoekenga MT: The treatment of acute malaria with single oral doses of amodiaquin, chloroquine, hydroxychloroquine and pyrimethamine. Am J Tro Med Hyg. 1954, 3: 833-838.
20.
go back to reference Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G: Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003, 22: 3927-3936. 10.1038/sj.onc.1206622.CrossRefPubMed Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G: Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene. 2003, 22: 3927-3936. 10.1038/sj.onc.1206622.CrossRefPubMed
21.
go back to reference Chen JW, Chen GL, D'Souza MP, Murphy TL, August JT: Lysosomal membrane glycoproteins: properties of LAMP-1 and LAMP-2. Biochem Soc Symp. 1986, 51: 97-112.PubMed Chen JW, Chen GL, D'Souza MP, Murphy TL, August JT: Lysosomal membrane glycoproteins: properties of LAMP-1 and LAMP-2. Biochem Soc Symp. 1986, 51: 97-112.PubMed
22.
go back to reference Boya P, Kroemer G: Lysosomal membrane permeabilization in cell death. Oncogene. 2008, 27: 6434-6451. 10.1038/onc.2008.310.CrossRefPubMed Boya P, Kroemer G: Lysosomal membrane permeabilization in cell death. Oncogene. 2008, 27: 6434-6451. 10.1038/onc.2008.310.CrossRefPubMed
23.
go back to reference Salganik RI: The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr. 2001, 20: 464S-472S.CrossRefPubMed Salganik RI: The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr. 2001, 20: 464S-472S.CrossRefPubMed
24.
go back to reference de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van HF: Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974, 23: 2495-2531.CrossRefPubMed de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van HF: Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974, 23: 2495-2531.CrossRefPubMed
25.
go back to reference Miller DK, Griffiths E, Lenard J, Firestone RA: Cell killing by lysosomotropic detergents. J Cell Biol. 1983, 97: 1841-1851. 10.1083/jcb.97.6.1841.CrossRefPubMed Miller DK, Griffiths E, Lenard J, Firestone RA: Cell killing by lysosomotropic detergents. J Cell Biol. 1983, 97: 1841-1851. 10.1083/jcb.97.6.1841.CrossRefPubMed
26.
go back to reference Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K: Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993, 32: 3902-3906. 10.1021/bi00066a008.CrossRefPubMed Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K: Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993, 32: 3902-3906. 10.1021/bi00066a008.CrossRefPubMed
27.
go back to reference Huss M, Ingenhorst G, Konig S, Gassel M, Drose S, Zeeck A, Altendorf K, Wieczorek H: Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. JBiolChem. 2002, 277: 40544-40548. Huss M, Ingenhorst G, Konig S, Gassel M, Drose S, Zeeck A, Altendorf K, Wieczorek H: Concanamycin A, the specific inhibitor of V-ATPases, binds to the V(o) subunit c. JBiolChem. 2002, 277: 40544-40548.
28.
go back to reference Firestone RA, Pisano JM, Bonney RJ: Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents. J Med Chem. 1979, 22: 1130-1133. 10.1021/jm00195a026.CrossRefPubMed Firestone RA, Pisano JM, Bonney RJ: Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents. J Med Chem. 1979, 22: 1130-1133. 10.1021/jm00195a026.CrossRefPubMed
29.
go back to reference Chen JW, Murphy TL, Willingham MC, Pastan I, August JT: Identification of two lysosomal membrane glycoproteins. J Cell Biol. 1985, 101: 85-95. 10.1083/jcb.101.1.85.CrossRefPubMed Chen JW, Murphy TL, Willingham MC, Pastan I, August JT: Identification of two lysosomal membrane glycoproteins. J Cell Biol. 1985, 101: 85-95. 10.1083/jcb.101.1.85.CrossRefPubMed
30.
go back to reference Carlsson SR, Roth J, Piller F, Fukuda M: Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J Biol Chem. 1988, 263: 18911-18919.PubMed Carlsson SR, Roth J, Piller F, Fukuda M: Isolation and characterization of human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Major sialoglycoproteins carrying polylactosaminoglycan. J Biol Chem. 1988, 263: 18911-18919.PubMed
31.
go back to reference Kundra R, Kornfeld S: Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem. 1999, 274: 31039-31046. 10.1074/jbc.274.43.31039.CrossRefPubMed Kundra R, Kornfeld S: Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem. 1999, 274: 31039-31046. 10.1074/jbc.274.43.31039.CrossRefPubMed
32.
go back to reference Fehrenbacher N, Bastholm L, Kirkegaard-Sorensen T, Rafn B, Bottzauw T, Nielsen C, Weber E, Shirasawa S, Kallunki T, Jaattela M: Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 2008, 68: 6623-6633. 10.1158/0008-5472.CAN-08-0463.CrossRefPubMed Fehrenbacher N, Bastholm L, Kirkegaard-Sorensen T, Rafn B, Bottzauw T, Nielsen C, Weber E, Shirasawa S, Kallunki T, Jaattela M: Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 2008, 68: 6623-6633. 10.1158/0008-5472.CAN-08-0463.CrossRefPubMed
33.
go back to reference Groth-Pedersen L, Jaattela M: Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2010 Groth-Pedersen L, Jaattela M: Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2010
34.
go back to reference Kirkegaard T, Jaattela M: Lysosomal involvement in cell death and cancer. Biochim Biophys Acta. 2009, 1793: 746-754. 10.1016/j.bbamcr.2008.09.008.CrossRefPubMed Kirkegaard T, Jaattela M: Lysosomal involvement in cell death and cancer. Biochim Biophys Acta. 2009, 1793: 746-754. 10.1016/j.bbamcr.2008.09.008.CrossRefPubMed
35.
go back to reference Repnik U, Turk B: Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion. 2010, 10: 662-669.PubMed Repnik U, Turk B: Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion. 2010, 10: 662-669.PubMed
36.
go back to reference Zhao M, Antunes F, Eaton JW, Brunk UT: Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem. 2003, 270: 3778-3786. 10.1046/j.1432-1033.2003.03765.x.CrossRefPubMed Zhao M, Antunes F, Eaton JW, Brunk UT: Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem. 2003, 270: 3778-3786. 10.1046/j.1432-1033.2003.03765.x.CrossRefPubMed
37.
go back to reference Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K: Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010, 15: 527-540. 10.1007/s10495-009-0452-5.PubMedCentralCrossRefPubMed Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K: Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010, 15: 527-540. 10.1007/s10495-009-0452-5.PubMedCentralCrossRefPubMed
38.
go back to reference Chow CK, Ibrahim W, Wei Z, Chan AC: Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic Biol Med. 1999, 27: 580-587. 10.1016/S0891-5849(99)00121-5.CrossRefPubMed Chow CK, Ibrahim W, Wei Z, Chan AC: Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic Biol Med. 1999, 27: 580-587. 10.1016/S0891-5849(99)00121-5.CrossRefPubMed
39.
go back to reference Post A, Rucker M, Ohl F, Uhr M, Holsboer F, Almeida OF, Michaelidis TM: Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology. 2002, 26: 397-407. 10.1016/S0893-133X(01)00364-5.CrossRefPubMed Post A, Rucker M, Ohl F, Uhr M, Holsboer F, Almeida OF, Michaelidis TM: Mechanisms underlying the protective potential of alpha-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology. 2002, 26: 397-407. 10.1016/S0893-133X(01)00364-5.CrossRefPubMed
40.
go back to reference Berardi F, Colabufo NA, Giudice G, Perrone R, Tortorella V, Govoni S, Lucchi L: New sigma and 5-HT1A receptor ligands: omega-(tetralin-1-yl)-n-alkylamine derivatives. J Med Chem. 1996, 39: 176-182. 10.1021/jm950409c.CrossRefPubMed Berardi F, Colabufo NA, Giudice G, Perrone R, Tortorella V, Govoni S, Lucchi L: New sigma and 5-HT1A receptor ligands: omega-(tetralin-1-yl)-n-alkylamine derivatives. J Med Chem. 1996, 39: 176-182. 10.1021/jm950409c.CrossRefPubMed
41.
go back to reference Abate C, Niso M, Contino M, Colabufo NA, Ferorelli S, Perrone R, Berardi F: 1-Cyclohexyl-4-(4-arylcyclohexyl)piperazines: Mixed sigma and human Delta(8)-Delta(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. Chem Med Chem. 2011, 6: 73-80.CrossRefPubMed Abate C, Niso M, Contino M, Colabufo NA, Ferorelli S, Perrone R, Berardi F: 1-Cyclohexyl-4-(4-arylcyclohexyl)piperazines: Mixed sigma and human Delta(8)-Delta(7) sterol isomerase ligands with antiproliferative and P-glycoprotein inhibitory activity. Chem Med Chem. 2011, 6: 73-80.CrossRefPubMed
42.
go back to reference Abate C, Niso M, Lacivita E, Mosier PD, Toscano A, Perrone R: Analogues of sigma receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]pipe razine (PB28) with added polar functionality and reduced lipophilicity for potential use as positron emission tomography radiotracers. J Med Chem. 2011, 54: 1022-1032. 10.1021/jm1013133.CrossRefPubMed Abate C, Niso M, Lacivita E, Mosier PD, Toscano A, Perrone R: Analogues of sigma receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]pipe razine (PB28) with added polar functionality and reduced lipophilicity for potential use as positron emission tomography radiotracers. J Med Chem. 2011, 54: 1022-1032. 10.1021/jm1013133.CrossRefPubMed
43.
go back to reference Ivanova S, Repnik U, Bojic L, Petelin A, Turk V, Turk B: Lysosomes in apoptosis. Methods Enzymol. 2008, 442: 183-199.PubMed Ivanova S, Repnik U, Bojic L, Petelin A, Turk V, Turk B: Lysosomes in apoptosis. Methods Enzymol. 2008, 442: 183-199.PubMed
Metadata
Title
Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer
Authors
John R Hornick
Suwanna Vangveravong
Dirk Spitzer
Carmen Abate
Francesco Berardi
Peter Goedegebuure
Robert H Mach
William G Hawkins
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2012
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-31-41

Other articles of this Issue 1/2012

Journal of Experimental & Clinical Cancer Research 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine