Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Lymphoma | Research

Raptor mediates the selective inhibitory effect of cardamonin on RRAGC-mutant B cell lymphoma

Authors: Ying Liu, Yanting Zhu, Huajiao Chen, Jintuo Zhou, Peiguang Niu, Daohua Shi

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

mTORC1 (mechanistic target of rapamycin complex 1) is associated with lymphoma progression. Oncogenic RRAGC (Rag guanosine triphosphatase C) mutations identified in patients with follicular lymphoma facilitate the interaction between Raptor (regulatory protein associated with mTOR) and Rag GTPase. It promotes the activation of mTORC1 and accelerates lymphomagenesis. Cardamonin inhibits mTORC1 by decreasing the protein level of Raptor. In the present study, we investigated the inhibitory effect and possible mechanism of action of cardamonin in RRAGC-mutant lymphoma. This could provide a precise targeted therapy for lymphoma with RRAGC mutations.

Methods

Cell viability was measured using a cell counting kit-8 (CCK-8) assay. Protein expression and phosphorylation levels were determined using western blotting. The interactions of mTOR and Raptor with RagC were determined by co-immunoprecipitation. Cells overexpressing RagC wild-type (RagCWT) and RagC Thr90Asn (RagCT90N) were generated by lentiviral infection. Raptor knockdown was performed by lentivirus-mediated shRNA transduction. The in vivo anti-tumour effect of cardamonin was assessed in a xenograft model.

Results

Cardamonin disrupted mTOR complex interactions by decreasing Raptor protein levels. RagCT90N overexpression via lentiviral infection increased cell proliferation and mTORC1 activation. The viability and tumour growth rate of RagCT90N-mutant cells were more sensitive to cardamonin treatment than those of normal and RagCWT cells. Cardamonin also exhibited a stronger inhibitory effect on the phosphorylation of mTOR and p70 S6 kinase 1 in RagCT90N-mutant cells. Raptor knockdown abolishes the inhibitory effects of cardamonin on mTOR. An in vivo xenograft model demonstrated that the RagCT90N-mutant showed significantly higher sensitivity to cardamonin treatment.

Conclusions

Cardamonin exerts selective therapeutic effects on RagCT90N-mutant cells. Cardamonin can serve as a drug for individualised therapy for follicular lymphoma with RRAGC mutations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jacobsen E. Follicular lymphoma: 2023 update on diagnosis and management. Am J Hematol. 2022;97(12):1638–51.PubMedCrossRef Jacobsen E. Follicular lymphoma: 2023 update on diagnosis and management. Am J Hematol. 2022;97(12):1638–51.PubMedCrossRef
2.
go back to reference Nastoupil LJ. When to use targeted therapy for the treatment of follicular lymphoma. Curr Hematol Malig Rep. 2021;16(1):45–51.PubMedCrossRef Nastoupil LJ. When to use targeted therapy for the treatment of follicular lymphoma. Curr Hematol Malig Rep. 2021;16(1):45–51.PubMedCrossRef
5.
go back to reference Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;169(2):361–71.PubMedCrossRef Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;169(2):361–71.PubMedCrossRef
7.
go back to reference Battaglioni S, Benjamin D, Walchli M, Maier T, Hall MN. mTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–36.PubMedCrossRef Battaglioni S, Benjamin D, Walchli M, Maier T, Hall MN. mTOR substrate phosphorylation in growth control. Cell. 2022;185(11):1814–36.PubMedCrossRef
8.
go back to reference Montero JC, Chen X, Ocana A, Pandiella A. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: therapeutic implications. Mol Cancer Ther. 2012;11(6):1342–52.PubMedCrossRef Montero JC, Chen X, Ocana A, Pandiella A. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: therapeutic implications. Mol Cancer Ther. 2012;11(6):1342–52.PubMedCrossRef
10.
go back to reference Gollwitzer P, Grutzmacher N, Wilhelm S, Kummel D, Demetriades C. A rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat Cell Biol. 2022;24(9):1394–406.PubMedPubMedCentralCrossRef Gollwitzer P, Grutzmacher N, Wilhelm S, Kummel D, Demetriades C. A rag GTPase dimer code defines the regulation of mTORC1 by amino acids. Nat Cell Biol. 2022;24(9):1394–406.PubMedPubMedCentralCrossRef
11.
go back to reference Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM, et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat Genet. 2016;48(2):183–8.PubMedCrossRef Okosun J, Wolfson RL, Wang J, Araf S, Wilkins L, Castellano BM, et al. Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nat Genet. 2016;48(2):183–8.PubMedCrossRef
12.
go back to reference Ying ZX, Jin M, Peterson LF, Bernard D, Saiya-Cork K, Yildiz M, et al. Recurrent mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clin Cancer Res. 2016;22(21):5383–93.PubMedPubMedCentralCrossRef Ying ZX, Jin M, Peterson LF, Bernard D, Saiya-Cork K, Yildiz M, et al. Recurrent mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clin Cancer Res. 2016;22(21):5383–93.PubMedPubMedCentralCrossRef
13.
go back to reference Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, et al. Architecture of human rag GTPase heterodimers and their complex with mTORC1. Science. 2019;366(6462):203–10.PubMedPubMedCentralCrossRef Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, et al. Architecture of human rag GTPase heterodimers and their complex with mTORC1. Science. 2019;366(6462):203–10.PubMedPubMedCentralCrossRef
14.
go back to reference Rogala KB, Gu X, Kedir JF, Abu-Remaileh M, Bianchi LF, Bottino AMS, et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science. 2019;366(6464):468–75.PubMedPubMedCentralCrossRef Rogala KB, Gu X, Kedir JF, Abu-Remaileh M, Bianchi LF, Bottino AMS, et al. Structural basis for the docking of mTORC1 on the lysosomal surface. Science. 2019;366(6464):468–75.PubMedPubMedCentralCrossRef
15.
go back to reference Ortega-Molina A, Deleyto-Seldas N, Carreras J, Sanz A, Lebrero-Fernandez C, Menendez C, et al. Oncogenic rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1(8):775–89.PubMedPubMedCentralCrossRef Ortega-Molina A, Deleyto-Seldas N, Carreras J, Sanz A, Lebrero-Fernandez C, Menendez C, et al. Oncogenic rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1(8):775–89.PubMedPubMedCentralCrossRef
16.
go back to reference Bennani NN, LaPlant BR, Ansell SM, Habermann TM, Inwards DJ, Micallef IN, et al. Efficacy of the oral mTORC1 inhibitor everolimus in relapsed or refractory indolent lymphoma. Am J Hematol. 2017;92(5):448–53.PubMedCrossRef Bennani NN, LaPlant BR, Ansell SM, Habermann TM, Inwards DJ, Micallef IN, et al. Efficacy of the oral mTORC1 inhibitor everolimus in relapsed or refractory indolent lymphoma. Am J Hematol. 2017;92(5):448–53.PubMedCrossRef
17.
18.
go back to reference Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016;534(7606):272–6.PubMedPubMedCentralCrossRef Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016;534(7606):272–6.PubMedPubMedCentralCrossRef
19.
go back to reference Bheemasankara Rao C, Namosiva Rao T, Suryaprakasam S. Cardamonin and alpinetin from the seeds of Amomum subulatum. Planta Med. 1976;29(4):391–2.PubMedCrossRef Bheemasankara Rao C, Namosiva Rao T, Suryaprakasam S. Cardamonin and alpinetin from the seeds of Amomum subulatum. Planta Med. 1976;29(4):391–2.PubMedCrossRef
20.
go back to reference Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, et al. Cardamonin: a new player to fight cancer via multiple cancer signaling pathways. Life Sci. 2020;250:117591.PubMedCrossRef Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, et al. Cardamonin: a new player to fight cancer via multiple cancer signaling pathways. Life Sci. 2020;250:117591.PubMedCrossRef
21.
go back to reference Chen H, Huang S, Niu P, Zhu Y, Zhou J, Jiang L, et al. Cardamonin suppresses pro-tumor function of macrophages by decreasing M2 polarization on ovarian cancer cells via mTOR inhibition. Mol Ther Oncolytics. 2022;26:175–88.PubMedPubMedCentralCrossRef Chen H, Huang S, Niu P, Zhu Y, Zhou J, Jiang L, et al. Cardamonin suppresses pro-tumor function of macrophages by decreasing M2 polarization on ovarian cancer cells via mTOR inhibition. Mol Ther Oncolytics. 2022;26:175–88.PubMedPubMedCentralCrossRef
22.
go back to reference Tang Y, Fang Q, Shi D, Niu P, Chen Y, Deng J. mTOR inhibition of cardamonin on antiproliferation of A549 cells is involved in a FKBP12 independent fashion. Life Sci. 2014;99(1–2):44–51.PubMedCrossRef Tang Y, Fang Q, Shi D, Niu P, Chen Y, Deng J. mTOR inhibition of cardamonin on antiproliferation of A549 cells is involved in a FKBP12 independent fashion. Life Sci. 2014;99(1–2):44–51.PubMedCrossRef
23.
go back to reference Shi D, Zhao D, Niu P, Zhu Y, Zhou J, Chen H. Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells. BMC Complement Altern Med. 2018;18(1):317.PubMedPubMedCentralCrossRef Shi D, Zhao D, Niu P, Zhu Y, Zhou J, Chen H. Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells. BMC Complement Altern Med. 2018;18(1):317.PubMedPubMedCentralCrossRef
24.
go back to reference Shi D, Zhu Y, Niu P, Zhou J, Chen H. Raptor mediates the antiproliferation of cardamonin by mTORC1 inhibition in SKOV3 cells. Onco Targets Ther. 2018;11:757–67.PubMedPubMedCentralCrossRef Shi D, Zhu Y, Niu P, Zhou J, Chen H. Raptor mediates the antiproliferation of cardamonin by mTORC1 inhibition in SKOV3 cells. Onco Targets Ther. 2018;11:757–67.PubMedPubMedCentralCrossRef
25.
go back to reference Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.PubMedCrossRef Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.PubMedCrossRef
26.
go back to reference Cahill KE, Smith SM. Follicular lymphoma: a focus on current and emerging therapies. Oncol (Williston Park). 2022;36(2):97–106. Cahill KE, Smith SM. Follicular lymphoma: a focus on current and emerging therapies. Oncol (Williston Park). 2022;36(2):97–106.
27.
go back to reference Ortega-Molina A, Lebrero-Fernandez C, Sanz A, Deleyto-Seldas N, Plata-Gomez AB, Menendez C, et al. Inhibition of rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36(2):109372.PubMedPubMedCentralCrossRef Ortega-Molina A, Lebrero-Fernandez C, Sanz A, Deleyto-Seldas N, Plata-Gomez AB, Menendez C, et al. Inhibition of rag GTPase signaling in mice suppresses B cell responses and lymphomagenesis with minimal detrimental trade-offs. Cell Rep. 2021;36(2):109372.PubMedPubMedCentralCrossRef
29.
go back to reference Smith SM, van Besien K, Karrison T, Dancey J, McLaughlin P, Younes A, et al. Temsirolimus has activity in non-mantle cell non-hodgkin’s lymphoma subtypes: the University of Chicago phase II consortium. J Clin Oncol. 2010;28(31):4740–6.PubMedPubMedCentralCrossRef Smith SM, van Besien K, Karrison T, Dancey J, McLaughlin P, Younes A, et al. Temsirolimus has activity in non-mantle cell non-hodgkin’s lymphoma subtypes: the University of Chicago phase II consortium. J Clin Oncol. 2010;28(31):4740–6.PubMedPubMedCentralCrossRef
30.
go back to reference Johnston PB, Pinter-Brown LC, Warsi G, White K, Ramchandren R. Phase 2 study of everolimus for relapsed or refractory classical Hodgkin lymphoma. Exp Hematol Oncol. 2018;7:12.PubMedPubMedCentralCrossRef Johnston PB, Pinter-Brown LC, Warsi G, White K, Ramchandren R. Phase 2 study of everolimus for relapsed or refractory classical Hodgkin lymphoma. Exp Hematol Oncol. 2018;7:12.PubMedPubMedCentralCrossRef
31.
go back to reference Tobinai K, Ogura M, Maruyama D, Uchida T, Uike N, Choi I, et al. Phase I study of the oral mammalian target of rapamycin inhibitor everolimus (RAD001) in japanese patients with relapsed or refractory non-hodgkin lymphoma. Int J Hematol. 2010;92(4):563–70.PubMedCrossRef Tobinai K, Ogura M, Maruyama D, Uchida T, Uike N, Choi I, et al. Phase I study of the oral mammalian target of rapamycin inhibitor everolimus (RAD001) in japanese patients with relapsed or refractory non-hodgkin lymphoma. Int J Hematol. 2010;92(4):563–70.PubMedCrossRef
32.
go back to reference Randall C, Fedoriw Y. Pathology and diagnosis of follicular lymphoma and related entities. Pathology. 2020;52(1):30–9.PubMedCrossRef Randall C, Fedoriw Y. Pathology and diagnosis of follicular lymphoma and related entities. Pathology. 2020;52(1):30–9.PubMedCrossRef
33.
go back to reference Huntington SF, Schuster SJ, Ding W, Koehler AB, Brander DM, Rosenthal AC, et al. DTRMWXHS-12, a novel Bruton tyrosine kinase inhibitor, in combination with everolimus and pomalidomide in patients with relapsed/refractory lymphomas: an open-label, multicenter, phase 1a/1b study. Am J Hematol. 2023;98:739–49.PubMedCrossRef Huntington SF, Schuster SJ, Ding W, Koehler AB, Brander DM, Rosenthal AC, et al. DTRMWXHS-12, a novel Bruton tyrosine kinase inhibitor, in combination with everolimus and pomalidomide in patients with relapsed/refractory lymphomas: an open-label, multicenter, phase 1a/1b study. Am J Hematol. 2023;98:739–49.PubMedCrossRef
34.
go back to reference Janku F, Park H, Call SG, Madwani K, Oki Y, Subbiah V, et al. Safety and Efficacy of Vorinostat Plus Sirolimus or Everolimus in patients with relapsed refractory Hodgkin Lymphoma. Clin Cancer Res. 2020;26(21):5579–87.PubMedCrossRef Janku F, Park H, Call SG, Madwani K, Oki Y, Subbiah V, et al. Safety and Efficacy of Vorinostat Plus Sirolimus or Everolimus in patients with relapsed refractory Hodgkin Lymphoma. Clin Cancer Res. 2020;26(21):5579–87.PubMedCrossRef
35.
go back to reference Egle A, Harris AW, Bath ML, O’Reilly L, Cory S. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood. 2004;103(6):2276–83.PubMedCrossRef Egle A, Harris AW, Bath ML, O’Reilly L, Cory S. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood. 2004;103(6):2276–83.PubMedCrossRef
36.
go back to reference Alqurashi N, Hashimi SM, Wei MQ. Chemical inhibitors and microRNAs (miRNA) targeting the mammalian target of Rapamycin (mTOR) pathway: potential for Novel Anticancer therapeutics. Int J Mol Sci. 2013;14(2):3874–900.PubMedPubMedCentralCrossRef Alqurashi N, Hashimi SM, Wei MQ. Chemical inhibitors and microRNAs (miRNA) targeting the mammalian target of Rapamycin (mTOR) pathway: potential for Novel Anticancer therapeutics. Int J Mol Sci. 2013;14(2):3874–900.PubMedPubMedCentralCrossRef
38.
go back to reference Shi D, Niu P, Heng X, Chen L, Zhu Y, Zhou J. Autophagy induced by cardamonin is associated with mTORC1 inhibition in SKOV3 cells. Pharmacol Rep. 2018;70(5):908–16.PubMedCrossRef Shi D, Niu P, Heng X, Chen L, Zhu Y, Zhou J. Autophagy induced by cardamonin is associated with mTORC1 inhibition in SKOV3 cells. Pharmacol Rep. 2018;70(5):908–16.PubMedCrossRef
39.
go back to reference Zhu Y, Zhou J, Niu P, Chen H, Shi D. Cardamonin inhibits cell proliferation by caspase-mediated cleavage of Raptor. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(4):809–17.PubMedCrossRef Zhu Y, Zhou J, Niu P, Chen H, Shi D. Cardamonin inhibits cell proliferation by caspase-mediated cleavage of Raptor. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(4):809–17.PubMedCrossRef
40.
go back to reference Niu P, Li J, Chen H, Zhu Y, Zhou J, Shi D. Anti–proliferative effect of cardamonin on mTOR inhibitor–resistant cancer cells. Mol Med Rep. 2020;21(3):1399–407.PubMed Niu P, Li J, Chen H, Zhu Y, Zhou J, Shi D. Anti–proliferative effect of cardamonin on mTOR inhibitor–resistant cancer cells. Mol Med Rep. 2020;21(3):1399–407.PubMed
41.
go back to reference Long PA, Zimmermann MT, Kim M, Evans JM, Xu X, Olson TM. De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy. Hum Genet. 2016;135(8):909–17.PubMedPubMedCentralCrossRef Long PA, Zimmermann MT, Kim M, Evans JM, Xu X, Olson TM. De novo RRAGC mutation activates mTORC1 signaling in syndromic fetal dilated cardiomyopathy. Hum Genet. 2016;135(8):909–17.PubMedPubMedCentralCrossRef
42.
go back to reference Long PA, Evans JM, Olson TM. Diagnostic yield of whole exome sequencing in Pediatric Dilated Cardiomyopathy. J Cardiovasc Dev Dis. 2017;4(3):11.PubMedPubMedCentral Long PA, Evans JM, Olson TM. Diagnostic yield of whole exome sequencing in Pediatric Dilated Cardiomyopathy. J Cardiovasc Dev Dis. 2017;4(3):11.PubMedPubMedCentral
43.
go back to reference Kim M, Lu L, Dvornikov AV, Ma X, Ding Y, Zhu P, et al. TFEB overexpression, not mTOR inhibition, ameliorates RagC(S75Y) cardiomyopathy. Int J Mol Sci. 2021;22(11):5494.PubMedPubMedCentralCrossRef Kim M, Lu L, Dvornikov AV, Ma X, Ding Y, Zhu P, et al. TFEB overexpression, not mTOR inhibition, ameliorates RagC(S75Y) cardiomyopathy. Int J Mol Sci. 2021;22(11):5494.PubMedPubMedCentralCrossRef
44.
go back to reference Cui Z, Napolitano G, de Araujo MEG, Esposito A, Monfregola J, Huber LA, et al. Structure of the lysosomal mTORC1-TFEB-Rag-ragulator megacomplex. Nature. 2023;614(7948):572–9.PubMedPubMedCentralCrossRef Cui Z, Napolitano G, de Araujo MEG, Esposito A, Monfregola J, Huber LA, et al. Structure of the lysosomal mTORC1-TFEB-Rag-ragulator megacomplex. Nature. 2023;614(7948):572–9.PubMedPubMedCentralCrossRef
45.
go back to reference Figlia G, Muller S, Hagenston AM, Kleber S, Roiuk M, Quast JP, et al. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat Cell Biol. 2022;24(9):1407–21.PubMedPubMedCentralCrossRef Figlia G, Muller S, Hagenston AM, Kleber S, Roiuk M, Quast JP, et al. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat Cell Biol. 2022;24(9):1407–21.PubMedPubMedCentralCrossRef
Metadata
Title
Raptor mediates the selective inhibitory effect of cardamonin on RRAGC-mutant B cell lymphoma
Authors
Ying Liu
Yanting Zhu
Huajiao Chen
Jintuo Zhou
Peiguang Niu
Daohua Shi
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Lymphoma
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04166-7

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue