Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Lymphoma | Primary research

Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells

Authors: Hongxia Wang, Liyan Wang, Yanning Li, Guangqi Li, Xiaochun Zhang, Dan Jiang, Yanting Zhang, Liyuan Liu, Yuankui Chu, Guangxian Xu

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Taking advantage of nanobodies (Nbs) in immunotherapy, we investigated the cytotoxicity of Nb-based chimeric antigen receptor T cells (Nb CAR-T) against lymphoma cells.

Methods

CD19 Nb CAR-T, CD20 Nb CAR-T, and Bispecific Nb CAR-T cells were generated by panning anti-human CD19- and CD20-specific nanobody sequences from a natural Nb-expressing phage display library, integrating Nb genes with a lentiviral cassette that included other CAR elements, and finally transducing T cells that were expanded under an optimization system with the above generated CAR lentivirus. Prepared Nb CAR-T cells were cocultured with tumour cell lines or primary tumour cells for 24 h or 5 days to evaluate their biological function.

Results

The nanobodies that we selected from the natural Nb-expressing phage display library had a high affinity and specificity for CD19 and CD20. CD19 Nb CAR-T, CD20 Nb CAR-T and Bispecific Nb CAR-T cells were successfully constructed, and these Nb CAR-T cells could strongly recognize Burkitt lymphoma cell lines (Raji and Daudi), thereby leading to activation, enhanced proliferation, and specific killing of target cells. Furthermore, similar results were obtained when using patient samples as target cells, with a cytotoxicity of approximately 60%.

Conclusions

Nanobody-based CAR-T cells can kill both tumour cell lines and patient-derived tumour cells in vitro, and Nb-based CAR-T cells may be a promising therapeutic strategy in future immunotherapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grosser R, Cherkassky L, Chintala N, et al. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer cell. 2019;36:471–82.PubMedPubMedCentralCrossRef Grosser R, Cherkassky L, Chintala N, et al. Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer cell. 2019;36:471–82.PubMedPubMedCentralCrossRef
3.
go back to reference Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.PubMedCrossRef Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet. 2021;397:1010–22.PubMedCrossRef
4.
7.
go back to reference Neelapu S, Locke F, Bartlett N, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531–44.PubMedPubMedCentralCrossRef Neelapu S, Locke F, Bartlett N, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl J Med. 2017;377:2531–44.PubMedPubMedCentralCrossRef
8.
go back to reference Munshi N, Anderson L, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384:705–16.PubMedCrossRef Munshi N, Anderson L, Shah N, et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N Engl J Med. 2021;384:705–16.PubMedCrossRef
9.
go back to reference Qin J, Johnstone T, Baturevych A, et al. Antitumor potency of an anti-CD19 chimeric antigen receptor T-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib. J Immunother. 2020;43:107–20.PubMedPubMedCentralCrossRef Qin J, Johnstone T, Baturevych A, et al. Antitumor potency of an anti-CD19 chimeric antigen receptor T-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib. J Immunother. 2020;43:107–20.PubMedPubMedCentralCrossRef
10.
go back to reference Sheridan C. First approval in sight for Novartis’ CAR-T therapy after panel vote. Nat Biotechnol. 2017;35:691–3.PubMedCrossRef Sheridan C. First approval in sight for Novartis’ CAR-T therapy after panel vote. Nat Biotechnol. 2017;35:691–3.PubMedCrossRef
11.
12.
go back to reference Finney H, Akbar A, Lawson A. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172:104–13.PubMedCrossRef Finney H, Akbar A, Lawson A. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol. 2004;172:104–13.PubMedCrossRef
13.
go back to reference Irving B, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901.PubMedCrossRef Irving B, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901.PubMedCrossRef
15.
go back to reference Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.PubMedPubMedCentralCrossRef Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.PubMedPubMedCentralCrossRef
16.
go back to reference Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149:960–8.PubMedCrossRef Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149:960–8.PubMedCrossRef
18.
go back to reference Gorovits B, Koren E. Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs. 2019;33:275–84.PubMedCrossRef Gorovits B, Koren E. Immunogenicity of chimeric antigen receptor T-cell therapeutics. BioDrugs. 2019;33:275–84.PubMedCrossRef
19.
go back to reference Guedan S, Calderon H, Posey A, et al. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 2019;12:145–56.PubMedCrossRef Guedan S, Calderon H, Posey A, et al. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 2019;12:145–56.PubMedCrossRef
20.
go back to reference Sun W, Xie J, Lin H, et al. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif. 2012;83:21–9.PubMedCrossRef Sun W, Xie J, Lin H, et al. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif. 2012;83:21–9.PubMedCrossRef
21.
go back to reference Nix M, Mandal K, Geng H, et al. Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL. Cancer Discov. 2021;11(8):2032–49.PubMedPubMedCentral Nix M, Mandal K, Geng H, et al. Surface proteomics reveals CD72 as a target for in vitro-evolved nanobody-based CAR-T cells in KMT2A/MLL1-rearranged B-ALL. Cancer Discov. 2021;11(8):2032–49.PubMedPubMedCentral
22.
23.
go back to reference Mo F, Duan S, Jiang X, et al. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct Target Ther. 2021;6:80.PubMedPubMedCentralCrossRef Mo F, Duan S, Jiang X, et al. Nanobody-based chimeric antigen receptor T cells designed by CRISPR/Cas9 technology for solid tumor immunotherapy. Signal Transduct Target Ther. 2021;6:80.PubMedPubMedCentralCrossRef
24.
go back to reference Iezzi M, Policastro L, Werbajh S, et al. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front Immunol. 2018;9:273.PubMedPubMedCentralCrossRef Iezzi M, Policastro L, Werbajh S, et al. Single-domain antibodies and the promise of modular targeting in cancer imaging and treatment. Front Immunol. 2018;9:273.PubMedPubMedCentralCrossRef
25.
go back to reference Sun S, Ding Z, Yang X, et al. Nanobody: a small antibody with big implications for tumor therapeutic strategy. IInt J Nanomed. 2021;16:2337–56.CrossRef Sun S, Ding Z, Yang X, et al. Nanobody: a small antibody with big implications for tumor therapeutic strategy. IInt J Nanomed. 2021;16:2337–56.CrossRef
26.
go back to reference Ingram J, Schmidt F, Ploegh H. Exploiting nanobodies’ singular traits. Annu Rev Immunol. 2018;36:695–715.PubMedCrossRef Ingram J, Schmidt F, Ploegh H. Exploiting nanobodies’ singular traits. Annu Rev Immunol. 2018;36:695–715.PubMedCrossRef
27.
go back to reference Harmsen M, De Haard H. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13–22.PubMedPubMedCentralCrossRef Harmsen M, De Haard H. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13–22.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev. 2021;50:6013–41.PubMedCrossRef Xiong Y, Xiao C, Li Z, et al. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem Soc Rev. 2021;50:6013–41.PubMedCrossRef
30.
go back to reference Nessler I, Khera E, Vance S, et al. Increased tumor penetration of single-domain antibody-drug conjugates improves efficacy in prostate cancer models. Cancer Res. 2020;80:1268–78.PubMedPubMedCentralCrossRef Nessler I, Khera E, Vance S, et al. Increased tumor penetration of single-domain antibody-drug conjugates improves efficacy in prostate cancer models. Cancer Res. 2020;80:1268–78.PubMedPubMedCentralCrossRef
31.
go back to reference Nakamura T, Harashima H. Integration of nano drug-delivery system with cancer immunotherapy. Ther Deliv. 2017;8:987–1000.PubMedCrossRef Nakamura T, Harashima H. Integration of nano drug-delivery system with cancer immunotherapy. Ther Deliv. 2017;8:987–1000.PubMedCrossRef
32.
go back to reference Goldberg M. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019;19:587–602.PubMedCrossRef Goldberg M. Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer. 2019;19:587–602.PubMedCrossRef
34.
go back to reference Martin J, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol. 2020;17:251–66.PubMedPubMedCentralCrossRef Martin J, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol. 2020;17:251–66.PubMedPubMedCentralCrossRef
36.
go back to reference Zhang P, Zhai Y, Cai Y, et al. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv Mater. 2019;31:e1904156.PubMedCrossRef Zhang P, Zhai Y, Cai Y, et al. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv Mater. 2019;31:e1904156.PubMedCrossRef
37.
go back to reference Jacoby E, Nguyen S, Fountaine T, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320.PubMedPubMedCentralCrossRef Jacoby E, Nguyen S, Fountaine T, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320.PubMedPubMedCentralCrossRef
38.
go back to reference Orlando E, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24:1504–6.PubMedCrossRef Orlando E, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24:1504–6.PubMedCrossRef
39.
go back to reference Sotillo E, Barrett D, Black K, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95.PubMedPubMedCentralCrossRef Sotillo E, Barrett D, Black K, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95.PubMedPubMedCentralCrossRef
40.
go back to reference Shah N, Johnson B, Schneider D, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26:1569–75.PubMedCrossRef Shah N, Johnson B, Schneider D, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26:1569–75.PubMedCrossRef
41.
go back to reference Choi B, Yu X, Castano A, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37:1049–58.PubMedCrossRef Choi B, Yu X, Castano A, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37:1049–58.PubMedCrossRef
42.
go back to reference Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun. 2020;11:2283.PubMedPubMedCentralCrossRef Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun. 2020;11:2283.PubMedPubMedCentralCrossRef
43.
go back to reference Zah E, Lin M, Silva-Benedict A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4:498–508.PubMedPubMedCentralCrossRef Zah E, Lin M, Silva-Benedict A, et al. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4:498–508.PubMedPubMedCentralCrossRef
44.
go back to reference June C, O’Connor R, Kawalekar O, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.PubMedCrossRef June C, O’Connor R, Kawalekar O, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.PubMedCrossRef
45.
go back to reference Mikkilineni L, Kochenderfer J. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18:71–84.PubMedCrossRef Mikkilineni L, Kochenderfer J. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol. 2021;18:71–84.PubMedCrossRef
46.
go back to reference Elsallab M, Levine B, Wayne A, et al. CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 2020;21:e104–16.PubMedPubMedCentralCrossRef Elsallab M, Levine B, Wayne A, et al. CAR T-cell product performance in haematological malignancies before and after marketing authorisation. Lancet Oncol. 2020;21:e104–16.PubMedPubMedCentralCrossRef
47.
go back to reference Jacobson C. CD19 chimeric antigen receptor therapy for refractory aggressive B-cell lymphoma. J Clin Oncol. 2019;37:328–35.PubMedCrossRef Jacobson C. CD19 chimeric antigen receptor therapy for refractory aggressive B-cell lymphoma. J Clin Oncol. 2019;37:328–35.PubMedCrossRef
48.
go back to reference Brudno J, Kochenderfer J. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46.PubMedCrossRef Brudno J, Kochenderfer J. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46.PubMedCrossRef
49.
50.
go back to reference Kochenderfer J, Rosenberg S. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10:267–76.PubMedPubMedCentralCrossRef Kochenderfer J, Rosenberg S. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10:267–76.PubMedPubMedCentralCrossRef
51.
go back to reference Singh A, McGuirk J. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21:e168–78.PubMedCrossRef Singh A, McGuirk J. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21:e168–78.PubMedCrossRef
52.
go back to reference Hong M, Clubb J, Chen Y, Engineering. CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38:473–88.PubMedCrossRef Hong M, Clubb J, Chen Y, Engineering. CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38:473–88.PubMedCrossRef
54.
go back to reference Rafiq S, Hackett C, Brentjens R. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17:147–67.PubMedCrossRef Rafiq S, Hackett C, Brentjens R. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17:147–67.PubMedCrossRef
55.
57.
go back to reference Rahbarizadeh F, Ahmadvand D, Moghimi S. CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev. 2019;141:41–6.PubMedCrossRef Rahbarizadeh F, Ahmadvand D, Moghimi S. CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev. 2019;141:41–6.PubMedCrossRef
58.
go back to reference Gong N, Sheppard N, Billingsley M, et al. Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol. 2021;16:25–36.PubMedCrossRef Gong N, Sheppard N, Billingsley M, et al. Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol. 2021;16:25–36.PubMedCrossRef
60.
go back to reference Xie Y, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA. 2019;116:7624–31.PubMedPubMedCentralCrossRef Xie Y, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA. 2019;116:7624–31.PubMedPubMedCentralCrossRef
61.
go back to reference Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.PubMedPubMedCentralCrossRef Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.PubMedPubMedCentralCrossRef
63.
go back to reference Kawalekar OU, O’Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:380–90.PubMedCrossRef Kawalekar OU, O’Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44:380–90.PubMedCrossRef
64.
65.
go back to reference Jureczek J, Feldmann A, Bergmann R, et al. Highly efficient targeting of EGFR-expressing tumor cells with UniCAR T cells via target modules based on cetuximab. Onco Targets Ther. 2020;13:5515–27.PubMedPubMedCentralCrossRef Jureczek J, Feldmann A, Bergmann R, et al. Highly efficient targeting of EGFR-expressing tumor cells with UniCAR T cells via target modules based on cetuximab. Onco Targets Ther. 2020;13:5515–27.PubMedPubMedCentralCrossRef
Metadata
Title
Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells
Authors
Hongxia Wang
Liyan Wang
Yanning Li
Guangqi Li
Xiaochun Zhang
Dan Jiang
Yanting Zhang
Liyuan Liu
Yuankui Chu
Guangxian Xu
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Lymphoma
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02151-z

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine