Skip to main content
Top
Published in: BMC Anesthesiology 1/2015

Open Access 01-12-2015 | Research article

Lung hyperaeration assessment by computed tomography: correction of reconstruction-induced bias

Authors: Lorenzo Ball, Claudia Brusasco, Francesco Corradi, Francesco Paparo, Alessandro Garlaschi, Peter Herrmann, Michael Quintel, Paolo Pelosi

Published in: BMC Anesthesiology | Issue 1/2015

Login to get access

Abstract

Background

Computed tomography (CT) reconstruction parameters, such as slice thickness and convolution kernel, significantly affect the quantification of hyperaerated parenchyma (VHYPER%). The aim of this study was to investigate the mathematical relation between VHYPER% calculated at different reconstruction settings, in mechanically ventilated and spontaneously breathing patients with different lung pathology.

Methods

In this retrospective observational study, CT scans of patients of the intensive care unit and emergency department were collected from two CT scanners and analysed with different kernel-thickness combinations (reconstructions): 1.25 mm soft kernel, 5 mm soft kernel, 5 mm sharp kernel in the first scanner; 2.5 mm slice thickness with a smooth (B41s) and a sharp (B70s) kernel on the second scanner. A quantitative analysis was performed with Maluna® to assess lung aeration compartments as percent of total lung volume. CT variables calculated with different reconstructions were compared in pairs, and their mathematical relationship was analysed by using quadratic and power functions.

Results

43 subjects were included in the present analysis. Image reconstruction parameters influenced all the quantitative CT-derived variables. The most relevant changes occurred in the hyperaerated and normally aerated volume compartments. The application of a power correction formula led to a significant reduction in the bias between VHYPER% estimations (p < 0.001 in all cases). The bias in VHYPER% assessment did not differ between lung pathology nor ventilation mode groups (p > 0.15 in all cases).

Conclusions

Hyperaerated percent volume at different reconstruction settings can be described by a fixed mathematical relationship, independent of lung pathology, ventilation mode, and type of CT scanner.
Literature
1.
go back to reference Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–86.CrossRefPubMed Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–86.CrossRefPubMed
2.
go back to reference Retamal J, Libuy J, Jiménez M, Delgado M, Besa C, Bugedo G, et al. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment - derecruitment and hyperinflation. eCrit Care Lond Engl. 2013;17:R16.CrossRef Retamal J, Libuy J, Jiménez M, Delgado M, Besa C, Bugedo G, et al. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment - derecruitment and hyperinflation. eCrit Care Lond Engl. 2013;17:R16.CrossRef
3.
go back to reference Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6.CrossRefPubMed Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6.CrossRefPubMed
4.
go back to reference Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183:1354–62.CrossRefPubMed Protti A, Cressoni M, Santini A, Langer T, Mietto C, Febres D, et al. Lung stress and strain during mechanical ventilation: any safe threshold? Am J Respir Crit Care Med. 2011;183:1354–62.CrossRefPubMed
5.
go back to reference Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, et al. Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology. 1988;69:824–32.CrossRefPubMed Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, et al. Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology. 1988;69:824–32.CrossRefPubMed
6.
go back to reference Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, et al. A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med. 1998;158:1571–7.CrossRefPubMed Vieira SR, Puybasset L, Richecoeur J, Lu Q, Cluzel P, Gusman PB, et al. A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med. 1998;158:1571–7.CrossRefPubMed
7.
go back to reference Boedeker KL, McNitt-Gray MF, Rogers SR, Truong DA, Brown MS, Gjertson DW, et al. Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology. 2004;232:295–301.CrossRefPubMed Boedeker KL, McNitt-Gray MF, Rogers SR, Truong DA, Brown MS, Gjertson DW, et al. Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology. 2004;232:295–301.CrossRefPubMed
8.
go back to reference Reske AW, Busse H, Amato MBP, Jaekel M, Kahn T, Schwarzkopf P, et al. Image reconstruction affects computer tomographic assessment of lung hyperinflation. Intensive Care Med. 2008;34:2044–53.CrossRefPubMed Reske AW, Busse H, Amato MBP, Jaekel M, Kahn T, Schwarzkopf P, et al. Image reconstruction affects computer tomographic assessment of lung hyperinflation. Intensive Care Med. 2008;34:2044–53.CrossRefPubMed
9.
go back to reference Cressoni M, Gallazzi E, Chiurazzi C, Marino A, Brioni M, Menga F, et al. Limits of normality of quantitative thoracic CT analysis. Crit Care Lond Engl. 2013;17:R93.CrossRef Cressoni M, Gallazzi E, Chiurazzi C, Marino A, Brioni M, Menga F, et al. Limits of normality of quantitative thoracic CT analysis. Crit Care Lond Engl. 2013;17:R93.CrossRef
10.
go back to reference Salito C, Woods JC, Aliverti A. Influence of CT reconstruction settings on extremely low attenuation values for specific gas volume calculation in severe emphysema. Acad Radiol. 2011;18:1277–84.CrossRefPubMedPubMedCentral Salito C, Woods JC, Aliverti A. Influence of CT reconstruction settings on extremely low attenuation values for specific gas volume calculation in severe emphysema. Acad Radiol. 2011;18:1277–84.CrossRefPubMedPubMedCentral
11.
go back to reference Bartel ST, Bierhals AJ, Pilgram TK, Hong C, Schechtman KB, Conradi SH, et al. Equating quantitative emphysema measurements on different CT image reconstructions. Med Phys. 2011;38:4894–902.CrossRefPubMedPubMedCentral Bartel ST, Bierhals AJ, Pilgram TK, Hong C, Schechtman KB, Conradi SH, et al. Equating quantitative emphysema measurements on different CT image reconstructions. Med Phys. 2011;38:4894–902.CrossRefPubMedPubMedCentral
12.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet Lond Engl. 2007;370:1453–7.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet Lond Engl. 2007;370:1453–7.CrossRef
13.
go back to reference Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164:1701–11.CrossRefPubMed Gattinoni L, Caironi P, Pelosi P, Goodman LR. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164:1701–11.CrossRefPubMed
14.
go back to reference Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby J-J. Bedside ultrasound assessment of positive end-expiratory pressure–induced lung recruitment. Am J Respir Crit Care Med. 2011;183:341–7.CrossRefPubMed Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby J-J. Bedside ultrasound assessment of positive end-expiratory pressure–induced lung recruitment. Am J Respir Crit Care Med. 2011;183:341–7.CrossRefPubMed
15.
go back to reference Luecke T, Corradi F, Pelosi P. Lung imaging for titration of mechanical ventilation. Curr Opin Anaesthesiol. 2012;25:131–40.CrossRefPubMed Luecke T, Corradi F, Pelosi P. Lung imaging for titration of mechanical ventilation. Curr Opin Anaesthesiol. 2012;25:131–40.CrossRefPubMed
16.
go back to reference Cinnella G, Grasso S, Raimondo P, D’Antini D, Mirabella L, Rauseo M, et al. Physiological effects of the open lung approach in patients with early, mild, diffuse acute respiratory distress syndrome: an electrical impedance tomography study. Anesthesiology. 2015;123:1113–21.CrossRefPubMed Cinnella G, Grasso S, Raimondo P, D’Antini D, Mirabella L, Rauseo M, et al. Physiological effects of the open lung approach in patients with early, mild, diffuse acute respiratory distress syndrome: an electrical impedance tomography study. Anesthesiology. 2015;123:1113–21.CrossRefPubMed
17.
go back to reference Schultz MJ, Haitsma JJ. How to detect tidal recruitment and/or alveolar hyperinflation--computed tomography, electrical impedance tomography, or stress index? Crit Care Med. 2008;36:1020–1.CrossRefPubMed Schultz MJ, Haitsma JJ. How to detect tidal recruitment and/or alveolar hyperinflation--computed tomography, electrical impedance tomography, or stress index? Crit Care Med. 2008;36:1020–1.CrossRefPubMed
18.
go back to reference Gattinoni L, Pelosi P, Pesenti A, Brazzi L, Vitale G, Moretto A, et al. CT scan in ARDS: clinical and physiopathological insights. Acta Anaesthesiol Scand Suppl. 1991;95:87–94. discussion 94–6.CrossRefPubMed Gattinoni L, Pelosi P, Pesenti A, Brazzi L, Vitale G, Moretto A, et al. CT scan in ARDS: clinical and physiopathological insights. Acta Anaesthesiol Scand Suppl. 1991;95:87–94. discussion 94–6.CrossRefPubMed
19.
go back to reference Ball L, Sutherasan Y, Pelosi P. Monitoring respiration: what the clinician needs to know. Best Pract Res Clin Anaesthesiol. 2013;27:209–23.CrossRefPubMed Ball L, Sutherasan Y, Pelosi P. Monitoring respiration: what the clinician needs to know. Best Pract Res Clin Anaesthesiol. 2013;27:209–23.CrossRefPubMed
20.
go back to reference Gierada DS, Bierhals AJ, Choong CK, Bartel ST, Ritter JH, Das NA, et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad Radiol. 2010;17:146–56.CrossRefPubMedPubMedCentral Gierada DS, Bierhals AJ, Choong CK, Bartel ST, Ritter JH, Das NA, et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad Radiol. 2010;17:146–56.CrossRefPubMedPubMedCentral
21.
go back to reference Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi-detector row CT--comparison with macroscopic and microscopic morphometry. Radiology. 2006;238:1036–43.CrossRefPubMed Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi-detector row CT--comparison with macroscopic and microscopic morphometry. Radiology. 2006;238:1036–43.CrossRefPubMed
22.
go back to reference Madani A, De Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification--comparison with macroscopic and microscopic morphometry. Radiology. 2007;243:250–7.CrossRefPubMed Madani A, De Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification--comparison with macroscopic and microscopic morphometry. Radiology. 2007;243:250–7.CrossRefPubMed
23.
go back to reference Gevenois PA, De Vuyst P, de Maertelaer V, Zanen J, Jacobovitz D, Cosio MG, et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1996;154:187–92.CrossRefPubMed Gevenois PA, De Vuyst P, de Maertelaer V, Zanen J, Jacobovitz D, Cosio MG, et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med. 1996;154:187–92.CrossRefPubMed
24.
go back to reference Reske AW, Reske AP, Gast HA, Seiwerts M, Beda A, Gottschaldt U, et al. Extrapolation from ten sections can make CT-based quantification of lung aeration more practicable. Intensive Care Med. 2010;36:1836–44.CrossRefPubMed Reske AW, Reske AP, Gast HA, Seiwerts M, Beda A, Gottschaldt U, et al. Extrapolation from ten sections can make CT-based quantification of lung aeration more practicable. Intensive Care Med. 2010;36:1836–44.CrossRefPubMed
25.
go back to reference Reske AW, Rau A, Reske AP, Koziol M, Gottwald B, Alef M, et al. Extrapolation in the analysis of lung aeration by computed tomography: a validation study. Crit Care Lond Engl. 2011;15:R279.CrossRef Reske AW, Rau A, Reske AP, Koziol M, Gottwald B, Alef M, et al. Extrapolation in the analysis of lung aeration by computed tomography: a validation study. Crit Care Lond Engl. 2011;15:R279.CrossRef
26.
go back to reference Güldner A, Braune A, Ball L, Silva PL, Samary C, Insorsi A, et al. Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med. 2016; ahead of print Güldner A, Braune A, Ball L, Silva PL, Samary C, Insorsi A, et al. Comparative effects of volutrauma and atelectrauma on lung inflammation in experimental acute respiratory distress syndrome. Crit Care Med. 2016; ahead of print
Metadata
Title
Lung hyperaeration assessment by computed tomography: correction of reconstruction-induced bias
Authors
Lorenzo Ball
Claudia Brusasco
Francesco Corradi
Francesco Paparo
Alessandro Garlaschi
Peter Herrmann
Michael Quintel
Paolo Pelosi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2015
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-016-0232-z

Other articles of this Issue 1/2015

BMC Anesthesiology 1/2015 Go to the issue