Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Lung Cancer | Research

Regulation of cancer stem cells by CXCL1, a chemokine whose secretion is controlled by MCM2

Authors: Yeon-Jee Kahm, In-Gyu Kim, Rae-Kwon Kim

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

A high expression pattern of minichromosome maintenance 2 (MCM2) has been observed in various cancers. MCM2 is a protein involved in the cell cycle and plays a role in cancer growth and differentiation by binding to six members of the MCM subfamily. The MCM protein family includes MCM2 through MCM7.

Methods

MCM2 has shown high expression in both lung cancer stem cells (LCSCs) and glioma stem cells (GSCs). We investigated the characteristics of CSCs and the regulation of the epithelial-to-mesenchymal transition (EMT) phenomenon in LCSCs and GSCs by MCM2. Additionally, we explored secreted factors regulated by MCM2.

Results

There was a significant difference in survival rates between lung cancer patients and brain cancer patients based on MCM2 expression. MCM2 was found to regulate both markers and regulatory proteins in LCSCs. Moreover, MCM2 is thought to be involved in cancer metastasis by regulating cell migration and invasion, not limited to lung cancer but also identified in glioma. Among chemokines, chemokine (C-X-C motif) ligand 1 (CXCL1) was found to be regulated by MCM2.

Conclusions

MCM2 not only participates in the cell cycle but also affects cancer cell growth by regulating the external microenvironment to create a favorable environment for cells. MCM2 is highly expressed in malignant carcinomas, including CSCs, and contributes to the malignancy of various cancers. Therefore, MCM2 may represent a crucial target for cancer therapeutics.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhai Y, Li N, Jiang H, Huang X, Gao N, Tye BK. Unique roles of the non-identical MCM subunits in DNA replication licensing. Mol Cell. 2017;67:168–79.CrossRefPubMed Zhai Y, Li N, Jiang H, Huang X, Gao N, Tye BK. Unique roles of the non-identical MCM subunits in DNA replication licensing. Mol Cell. 2017;67:168–79.CrossRefPubMed
3.
go back to reference Tye BK. The MCM2-3-5 proteins: are they replication licensing factors? Trends Cell Biol. 1994;4(5):160–6.CrossRefPubMed Tye BK. The MCM2-3-5 proteins: are they replication licensing factors? Trends Cell Biol. 1994;4(5):160–6.CrossRefPubMed
4.
go back to reference Nishitani H, Lygerou Z. Control of DNA replication licensing in a cell cycle. Genes Cells. 2002;7(6):523–34.CrossRefPubMed Nishitani H, Lygerou Z. Control of DNA replication licensing in a cell cycle. Genes Cells. 2002;7(6):523–34.CrossRefPubMed
5.
go back to reference Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106(48):20240–5.ADSPubMedCentralCrossRefPubMed Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A. 2009;106(48):20240–5.ADSPubMedCentralCrossRefPubMed
6.
go back to reference Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.PubMedCentralCrossRefPubMed Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139(4):719–30.PubMedCentralCrossRefPubMed
7.
go back to reference Sun J, Evrin C, Samel SA, Fernández-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol. 2013;20(8):944–51.PubMedCentralCrossRefPubMed Sun J, Evrin C, Samel SA, Fernández-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H. Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol. 2013;20(8):944–51.PubMedCentralCrossRefPubMed
8.
9.
go back to reference Liao X, Liu X, Yang C, Wang X, Yu T, Han C, Huang K, Zhu G, Su H, Qin W, Huang R, Yu L, Deng J, Zeng X, Ye X, Peng T. Distinct diagnostic and prognostic values of Minichromosome Maintenance Gene Expression in patients with Hepatocellular Carcinoma. J Cancer. 2018;9(13):2357–73.PubMedCentralCrossRefPubMed Liao X, Liu X, Yang C, Wang X, Yu T, Han C, Huang K, Zhu G, Su H, Qin W, Huang R, Yu L, Deng J, Zeng X, Ye X, Peng T. Distinct diagnostic and prognostic values of Minichromosome Maintenance Gene Expression in patients with Hepatocellular Carcinoma. J Cancer. 2018;9(13):2357–73.PubMedCentralCrossRefPubMed
10.
go back to reference Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S. p53 gain-of‐function mutations increase Cdc7‐dependent replication initiation. EMBO Rep. 2017;18(11):2030–50.PubMedCentralCrossRefPubMed Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S. p53 gain-of‐function mutations increase Cdc7‐dependent replication initiation. EMBO Rep. 2017;18(11):2030–50.PubMedCentralCrossRefPubMed
11.
go back to reference Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dörken B, Zuber J, Gronemeyer H, Hummel M, Dittmar G, Lee S, Schmitt CA. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96–100.ADSCrossRefPubMed Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, Mendoza-Parra MA, Kanashova T, Metzner M, Pardon K, Reimann M, Trumpp A, Dörken B, Zuber J, Gronemeyer H, Hummel M, Dittmar G, Lee S, Schmitt CA. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96–100.ADSCrossRefPubMed
13.
go back to reference Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Med (Baltim). 2016;95(1 Suppl 1):S20–5.ADSCrossRef Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Med (Baltim). 2016;95(1 Suppl 1):S20–5.ADSCrossRef
14.
go back to reference Alison MR, Lim SM, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol. 2011;223(2):147–61.CrossRefPubMed Alison MR, Lim SM, Nicholson LJ. Cancer stem cells: problems for therapy? J Pathol. 2011;223(2):147–61.CrossRefPubMed
15.
go back to reference Shibata M, Hoque MO. Targeting Cancer Stem cells: a strategy for effective eradication of Cancer. Cancers (Basel). 2019;11(5):732.CrossRefPubMed Shibata M, Hoque MO. Targeting Cancer Stem cells: a strategy for effective eradication of Cancer. Cancers (Basel). 2019;11(5):732.CrossRefPubMed
16.
18.
go back to reference Senese S, Lo YC, Huang D, Zangle TA, Gholkar AA, Robert L, Homet B, Ribas A, Summers MK, Teitell MA, Damoiseaux R, Torres JZ. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development. Cell Death Dis. 2014;5(10):e1462.PubMedCentralCrossRefPubMed Senese S, Lo YC, Huang D, Zangle TA, Gholkar AA, Robert L, Homet B, Ribas A, Summers MK, Teitell MA, Damoiseaux R, Torres JZ. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development. Cell Death Dis. 2014;5(10):e1462.PubMedCentralCrossRefPubMed
20.
go back to reference Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.PubMedCentralCrossRefPubMed Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8.PubMedCentralCrossRefPubMed
22.
go back to reference Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. 2015;56(5):414–25.PubMedCentralCrossRefPubMed Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res. 2015;56(5):414–25.PubMedCentralCrossRefPubMed
23.
24.
go back to reference Korkaya H, Liu S, Wicha MS. Regulation of Cancer Stem cells by Cytokine networks: attacking cancers inflammatory roots. Clin Cancer Res. 2011;17(19):6125–9.PubMedCentralCrossRefPubMed Korkaya H, Liu S, Wicha MS. Regulation of Cancer Stem cells by Cytokine networks: attacking cancers inflammatory roots. Clin Cancer Res. 2011;17(19):6125–9.PubMedCentralCrossRefPubMed
25.
go back to reference Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory cytokines and the Emerging Diagnostic devices for Cancer Detection and Prognosis. Front Oncol. 2021;11:692142.PubMedCentralCrossRefPubMed Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory cytokines and the Emerging Diagnostic devices for Cancer Detection and Prognosis. Front Oncol. 2021;11:692142.PubMedCentralCrossRefPubMed
26.
go back to reference Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN, Jolly MK. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A. 2019;116(1):148–57.ADSCrossRefPubMed Bocci F, Gearhart-Serna L, Boareto M, Ribeiro M, Ben-Jacob E, Devi GR, Levine H, Onuchic JN, Jolly MK. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A. 2019;116(1):148–57.ADSCrossRefPubMed
27.
go back to reference López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol. 2020;13(1):136.PubMedCentralCrossRefPubMed López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol. 2020;13(1):136.PubMedCentralCrossRefPubMed
28.
go back to reference Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, Del Fresno C, Lynam E, Hub E, Thelen M, Graham G, Alon R, Sancho D, von Andrian UH, Voisin MB, Rot A, Nourshargh S. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine Discrete stages of Neutrophil Diapedesis. Immunity. 2018;49(6):1062–e10766.PubMedCentralCrossRefPubMed Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, Del Fresno C, Lynam E, Hub E, Thelen M, Graham G, Alon R, Sancho D, von Andrian UH, Voisin MB, Rot A, Nourshargh S. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine Discrete stages of Neutrophil Diapedesis. Immunity. 2018;49(6):1062–e10766.PubMedCentralCrossRefPubMed
29.
go back to reference Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, Garofalo RP, Rajarathnam K. Chemokine CXCL1-Mediated neutrophil trafficking in the lung: role of CXCR2 activation. J Innate Immun. 2015;7(6):647–58.PubMedCentralCrossRefPubMed Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, Garofalo RP, Rajarathnam K. Chemokine CXCL1-Mediated neutrophil trafficking in the lung: role of CXCR2 activation. J Innate Immun. 2015;7(6):647–58.PubMedCentralCrossRefPubMed
30.
go back to reference Ravindran A, Sawant KV, Sarmiento J, Navarro J, Rajarathnam K. Chemokine CXCL1 dimer is a potent agonist for the CXCR2 receptor. J Biol Chem. 2013;288(17):12244–52.PubMedCentralCrossRefPubMed Ravindran A, Sawant KV, Sarmiento J, Navarro J, Rajarathnam K. Chemokine CXCL1 dimer is a potent agonist for the CXCR2 receptor. J Biol Chem. 2013;288(17):12244–52.PubMedCentralCrossRefPubMed
31.
go back to reference Baston-Büst DM, Schanz A, Böddeker SJ, Altergot-Ahmad O, Krüssel JS, Rein D, Hess AP. CXCL1 expression in human decidua in vitro is mediated via the MAPK signalling cascade. Cytokine. 2013;64(1):79–85.CrossRefPubMed Baston-Büst DM, Schanz A, Böddeker SJ, Altergot-Ahmad O, Krüssel JS, Rein D, Hess AP. CXCL1 expression in human decidua in vitro is mediated via the MAPK signalling cascade. Cytokine. 2013;64(1):79–85.CrossRefPubMed
32.
go back to reference Wei ZW, Xia GK, Wu Y, Chen W, Xiang Z, Schwarz RE, Brekken RA, Awasthi N, He YL, Zhang CH. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015;359(2):335–43.CrossRefPubMed Wei ZW, Xia GK, Wu Y, Chen W, Xiang Z, Schwarz RE, Brekken RA, Awasthi N, He YL, Zhang CH. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015;359(2):335–43.CrossRefPubMed
33.
go back to reference Wang Y, Liu J, Jiang Q, Deng J, Xu F, Chen X, Cheng F, Zhang Y, Yao Y, Xia Z, Xu X, Su X, Huang M, Dai L, Yang Y, Zhang S, Yu D, Zhao RC, Wei Y, Deng H. Human adipose-derived mesenchymal stem cell-secreted CXCL1 and CXCL8 facilitate breast Tumor Growth by promoting angiogenesis. Stem Cells. 2017;35(9):2060–70.CrossRefPubMed Wang Y, Liu J, Jiang Q, Deng J, Xu F, Chen X, Cheng F, Zhang Y, Yao Y, Xia Z, Xu X, Su X, Huang M, Dai L, Yang Y, Zhang S, Yu D, Zhao RC, Wei Y, Deng H. Human adipose-derived mesenchymal stem cell-secreted CXCL1 and CXCL8 facilitate breast Tumor Growth by promoting angiogenesis. Stem Cells. 2017;35(9):2060–70.CrossRefPubMed
34.
go back to reference Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203(4):941–51.PubMedCentralCrossRefPubMed Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med. 2006;203(4):941–51.PubMedCentralCrossRefPubMed
35.
go back to reference Lo HM, Shieh JM, Chen CL, Tsou CJ, Wu WB. Vascular endothelial growth factor induces CXCL1 chemokine release via JNK and PI-3K-Dependent pathways in human lung carcinoma epithelial cells. Int J Mol Sci. 2013;14(5):10090–106.PubMedCentralCrossRefPubMed Lo HM, Shieh JM, Chen CL, Tsou CJ, Wu WB. Vascular endothelial growth factor induces CXCL1 chemokine release via JNK and PI-3K-Dependent pathways in human lung carcinoma epithelial cells. Int J Mol Sci. 2013;14(5):10090–106.PubMedCentralCrossRefPubMed
36.
go back to reference Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massagué J. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78.PubMedCentralCrossRefPubMed Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massagué J. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165–78.PubMedCentralCrossRefPubMed
37.
go back to reference Xu J, Zhang C, He Y, Wu H, Wang Z, Song W, Li W, He W, Cai S, Zhan W. Lymphatic endothelial cell-secreted CXCL1 stimulates lymphangiogenesis and metastasis of gastric cancer. Int J Cancer. 2012;130(4):787–97.CrossRefPubMed Xu J, Zhang C, He Y, Wu H, Wang Z, Song W, Li W, He W, Cai S, Zhan W. Lymphatic endothelial cell-secreted CXCL1 stimulates lymphangiogenesis and metastasis of gastric cancer. Int J Cancer. 2012;130(4):787–97.CrossRefPubMed
38.
go back to reference Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011;22(10):2267–76.CrossRefPubMed Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Ann Oncol. 2011;22(10):2267–76.CrossRefPubMed
39.
go back to reference Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA, Katz RL. Aldehyde dehydrogenase 1 is a Tumor Stem Cell-Associated marker in Lung Cancer. Mol Cancer Res. 2009;7(3):330–8.PubMedCentralCrossRefPubMed Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA, Katz RL. Aldehyde dehydrogenase 1 is a Tumor Stem Cell-Associated marker in Lung Cancer. Mol Cancer Res. 2009;7(3):330–8.PubMedCentralCrossRefPubMed
40.
go back to reference Choi SI, Lee JH, Kim RK, Jung U, Kahm YJ, Cho EW, Kim IG. HSPA1L enhances Cancer Stem Cell-Like Properties by activating IGF1Rβ and regulating β-Catenin transcription. Int J Mol Sci. 2020;21(18):6957.PubMedCentralCrossRefPubMed Choi SI, Lee JH, Kim RK, Jung U, Kahm YJ, Cho EW, Kim IG. HSPA1L enhances Cancer Stem Cell-Like Properties by activating IGF1Rβ and regulating β-Catenin transcription. Int J Mol Sci. 2020;21(18):6957.PubMedCentralCrossRefPubMed
41.
go back to reference Yan X, Ma L, Yi D, Yoon JG, Diercks A, Foltz G, Price ND, Hood LE, Tian Q. A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci U S A. 2011;108(4):1591–6.ADSPubMedCentralCrossRefPubMed Yan X, Ma L, Yi D, Yoon JG, Diercks A, Foltz G, Price ND, Hood LE, Tian Q. A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proc Natl Acad Sci U S A. 2011;108(4):1591–6.ADSPubMedCentralCrossRefPubMed
42.
go back to reference Clément C, Almouzni G. MCM2 binding to histones H3–H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat Struct Mol Biol. 2015;22(8):587–9.CrossRefPubMed Clément C, Almouzni G. MCM2 binding to histones H3–H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat Struct Mol Biol. 2015;22(8):587–9.CrossRefPubMed
44.
go back to reference Abe S, Yamamoto K, Kurata M, Abe-Suzuki S, Horii R, Akiyama F, Kitagawa M. Targeting MCM2 function as a novel strategy for the treatment of highly malignant breast tumors. Oncotarget. 2015;6(33):34892–909.PubMedCentralCrossRefPubMed Abe S, Yamamoto K, Kurata M, Abe-Suzuki S, Horii R, Akiyama F, Kitagawa M. Targeting MCM2 function as a novel strategy for the treatment of highly malignant breast tumors. Oncotarget. 2015;6(33):34892–909.PubMedCentralCrossRefPubMed
45.
go back to reference Zhou X, Luo J, Xie H, Wei Z, Li T, Liu J, Liao X, Zhu G, Peng T. MCM2 promotes the stemness and sorafenib resistance of hepatocellular carcinoma cells via hippo signaling. Cell Death Discov. 2022;8(1):418.PubMedCentralCrossRefPubMed Zhou X, Luo J, Xie H, Wei Z, Li T, Liu J, Liao X, Zhu G, Peng T. MCM2 promotes the stemness and sorafenib resistance of hepatocellular carcinoma cells via hippo signaling. Cell Death Discov. 2022;8(1):418.PubMedCentralCrossRefPubMed
Metadata
Title
Regulation of cancer stem cells by CXCL1, a chemokine whose secretion is controlled by MCM2
Authors
Yeon-Jee Kahm
In-Gyu Kim
Rae-Kwon Kim
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12085-0

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine