Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

01-12-2021 | Lung Cancer | Research

MicroRNA-449a delays lung cancer development through inhibiting KDM3A/HIF-1α axis

Authors: Shan Hu, Peng Cao, Kangle Kong, Peng Han, Yu Deng, Fan Li, Bo Zhao

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

It has been established that microRNA (miR)-449a is anti-tumorigenic in cancers, including lung cancer. Therefore, this study further explored miR-449a-mediated mechanism in lung cancer, mainly focusing on lysine demethylase 3A/hypoxia-induced factor-1α (KDM3A/HIF-1α) axis.

Methods

miR-449a, KDM3A and HIF-1α levels in lung cancer tissues and cell lines (A549, H1299 and H460) were measured. Loss- and gain-of-function assays were performed and then cell proliferation, cell cycle, apoptosis, invasion and migration were traced. The relationship between KDM3A, miR-449a and HIF-1α was verified. Tumor growth in vivo was also monitored.

Results

Both lung cancer tissues and cells exhibited reduced miR-449a and raised KDM3A and HIF-1α levels. miR-449a interacted with KDM3A; HIF-1α could bind with KDM3A. Up-regulating miR-449a hindered while suppressing miR-449a induced lung cancer development via mediating HIF-1α. Elevating KDM3A promoted cellular aggression while down-regulating KDM3A had the opposite effects. Up-regulating KDM3A or HIF-1α negated up-regulated miR-449a-induced effects on cellular growth in lung cancer. Restoring miR-449a impaired tumorigenesis in vivo in lung cancer.

Conclusion

It is eventually concluded that miR-449a delays lung cancer development through suppressing KDM3A/HIF-1α axis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang T, et al. The Role of RASSF1 Methylation in Lung Carcinoma. Adv Exp Med Biol. 2020;1255:99–108.PubMedCrossRef Zhang T, et al. The Role of RASSF1 Methylation in Lung Carcinoma. Adv Exp Med Biol. 2020;1255:99–108.PubMedCrossRef
2.
go back to reference Xu R, et al. The momentous role of N6-methyladenosine in lung cancer. J Cell Physiol. 2020;236:3244.PubMedCrossRef Xu R, et al. The momentous role of N6-methyladenosine in lung cancer. J Cell Physiol. 2020;236:3244.PubMedCrossRef
3.
go back to reference Vavala T, et al. An examination of two dichotomies: Women with lung cancer and living with lung cancer as a chronic disease. Respirology. 2020;25(Suppl 2):24–36.PubMedCrossRef Vavala T, et al. An examination of two dichotomies: Women with lung cancer and living with lung cancer as a chronic disease. Respirology. 2020;25(Suppl 2):24–36.PubMedCrossRef
4.
6.
7.
go back to reference Pang L, et al. Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non-small cell lung cancer by regulating miR-449a/TGIF2 axis. Thorac Cancer. 2020;11(2):264–76.PubMedCrossRef Pang L, et al. Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non-small cell lung cancer by regulating miR-449a/TGIF2 axis. Thorac Cancer. 2020;11(2):264–76.PubMedCrossRef
8.
go back to reference Meng L, et al. Ultrasound-microbubbles-mediated microRNA-449a inhibits lung cancer cell growth via the regulation of Notch1. Onco Targets Ther. 2019;12:7437–50.PubMedPubMedCentralCrossRef Meng L, et al. Ultrasound-microbubbles-mediated microRNA-449a inhibits lung cancer cell growth via the regulation of Notch1. Onco Targets Ther. 2019;12:7437–50.PubMedPubMedCentralCrossRef
9.
go back to reference Bach DH, et al. Targeting nicotinamide N-methyltransferase and miR-449a in EGFR-TKI-resistant non-small-cell lung cancer cells. Mol Ther Nucleic Acids. 2018;11:455–67.PubMedPubMedCentralCrossRef Bach DH, et al. Targeting nicotinamide N-methyltransferase and miR-449a in EGFR-TKI-resistant non-small-cell lung cancer cells. Mol Ther Nucleic Acids. 2018;11:455–67.PubMedPubMedCentralCrossRef
10.
go back to reference Li L, et al. miR-449a Suppresses LDHA-mediated glycolysis to enhance the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Res. 2018;26(4):547–56.PubMedPubMedCentralCrossRef Li L, et al. miR-449a Suppresses LDHA-mediated glycolysis to enhance the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Res. 2018;26(4):547–56.PubMedPubMedCentralCrossRef
11.
go back to reference Cho HS, et al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer. 2012;131(3):E179–89.PubMedCrossRef Cho HS, et al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer. 2012;131(3):E179–89.PubMedCrossRef
12.
go back to reference Zhan M, et al. JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumour Biol. 2016;37(8):11237–47.PubMedCrossRef Zhan M, et al. JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumour Biol. 2016;37(8):11237–47.PubMedCrossRef
13.
go back to reference Li Y, et al. KDM3A promotes inhibitory cytokines secretion by participating in TLR4 regulation of Foxp3 transcription in lung adenocarcinoma cells. Oncol Lett. 2017;13(5):3529–37.PubMedPubMedCentralCrossRef Li Y, et al. KDM3A promotes inhibitory cytokines secretion by participating in TLR4 regulation of Foxp3 transcription in lung adenocarcinoma cells. Oncol Lett. 2017;13(5):3529–37.PubMedPubMedCentralCrossRef
14.
go back to reference Guo X, et al. Ascorbate antagonizes nickel ion to regulate JMJD1A expression in kidney cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(4):330–8.CrossRef Guo X, et al. Ascorbate antagonizes nickel ion to regulate JMJD1A expression in kidney cancer cells. Acta Biochim Biophys Sin (Shanghai). 2012;44(4):330–8.CrossRef
15.
go back to reference Huang X, Zhou W, Zhang Y. Transcription factor YY1 enhances the stemness of lung cancer cells by stabilizing hypoxia factor HIF-1alpha under a hypoxic microenvironment. Environ Toxicol. 2020;36:114.CrossRef Huang X, Zhou W, Zhang Y. Transcription factor YY1 enhances the stemness of lung cancer cells by stabilizing hypoxia factor HIF-1alpha under a hypoxic microenvironment. Environ Toxicol. 2020;36:114.CrossRef
16.
go back to reference Pandey N, et al. Allicin overcomes hypoxia mediated cisplatin resistance in lung cancer cells through ROS mediated cell death pathway and by suppressing hypoxia inducible factors. Cell Physiol Biochem. 2020;54(4):748–66.PubMedCrossRef Pandey N, et al. Allicin overcomes hypoxia mediated cisplatin resistance in lung cancer cells through ROS mediated cell death pathway and by suppressing hypoxia inducible factors. Cell Physiol Biochem. 2020;54(4):748–66.PubMedCrossRef
17.
go back to reference Ren XS, et al. Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. Cancer Lett. 2014;344(2):195–203.PubMedCrossRef Ren XS, et al. Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. Cancer Lett. 2014;344(2):195–203.PubMedCrossRef
18.
go back to reference Wu D, et al. miR-449a Suppresses tumor growth, migration, and invasion in non-small cell lung cancer by targeting a HMGB1-mediated NF-kappaB signaling pathway. Oncol Res. 2019;27(2):227–35.PubMedPubMedCentralCrossRef Wu D, et al. miR-449a Suppresses tumor growth, migration, and invasion in non-small cell lung cancer by targeting a HMGB1-mediated NF-kappaB signaling pathway. Oncol Res. 2019;27(2):227–35.PubMedPubMedCentralCrossRef
19.
go back to reference Song N, et al. MicroRNA-138-5p suppresses non-small cell lung cancer cells by targeting PD-L1/PD-1 to regulate tumor microenvironment. Front Cell Dev Biol. 2020;8:540.PubMedPubMedCentralCrossRef Song N, et al. MicroRNA-138-5p suppresses non-small cell lung cancer cells by targeting PD-L1/PD-1 to regulate tumor microenvironment. Front Cell Dev Biol. 2020;8:540.PubMedPubMedCentralCrossRef
20.
go back to reference Song LN, et al. Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. J Exp Clin Cancer Res. 2020;39(1):114.PubMedPubMedCentralCrossRef Song LN, et al. Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBP1. J Exp Clin Cancer Res. 2020;39(1):114.PubMedPubMedCentralCrossRef
21.
go back to reference Ye X, Lv H. MicroRNA-519d-3p inhibits cell proliferation and migration by targeting TROAP in colorectal cancer. Biomed Pharmacother. 2018;105:879–86.PubMedCrossRef Ye X, Lv H. MicroRNA-519d-3p inhibits cell proliferation and migration by targeting TROAP in colorectal cancer. Biomed Pharmacother. 2018;105:879–86.PubMedCrossRef
22.
go back to reference Zhang S, et al. MEF2activated long noncoding RNA PCGEM1 promotes cell proliferation in hormonerefractory prostate cancer through downregulation of miR148a. Mol Med Rep. 2018;18(1):202–8.PubMedPubMedCentral Zhang S, et al. MEF2activated long noncoding RNA PCGEM1 promotes cell proliferation in hormonerefractory prostate cancer through downregulation of miR148a. Mol Med Rep. 2018;18(1):202–8.PubMedPubMedCentral
23.
go back to reference Li X, et al. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42.PubMedCrossRef Li X, et al. MicroRNA-449a inhibits proliferation and induces apoptosis by directly repressing E2F3 in gastric cancer. Cell Physiol Biochem. 2015;35(5):2033–42.PubMedCrossRef
24.
go back to reference Gu J, et al. Effect of the LncRNA GAS5-MiR-23a-ATG3 axis in regulating autophagy in patients with breast cancer. Cell Physiol Biochem. 2018;48(1):194–207.PubMedCrossRef Gu J, et al. Effect of the LncRNA GAS5-MiR-23a-ATG3 axis in regulating autophagy in patients with breast cancer. Cell Physiol Biochem. 2018;48(1):194–207.PubMedCrossRef
25.
go back to reference Robinson TE, et al. Mucus plugging, air trapping, and bronchiectasis are important outcome measures in assessing progressive childhood cystic fibrosis lung disease. Pediatr Pulmonol. 2020;55(4):929–38.PubMedCrossRef Robinson TE, et al. Mucus plugging, air trapping, and bronchiectasis are important outcome measures in assessing progressive childhood cystic fibrosis lung disease. Pediatr Pulmonol. 2020;55(4):929–38.PubMedCrossRef
26.
go back to reference He C, et al. Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials. 2020;255:120181.PubMedCrossRef He C, et al. Lysine demethylase KDM3A regulates nanophotonic hyperthermia resistance generated by 2D silicene in breast cancer. Biomaterials. 2020;255:120181.PubMedCrossRef
27.
go back to reference Xie F, et al. MiR-143–3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS. Biomed Pharmacother. 2019;119:109424.PubMedCrossRef Xie F, et al. MiR-143–3p suppresses tumorigenesis in pancreatic ductal adenocarcinoma by targeting KRAS. Biomed Pharmacother. 2019;119:109424.PubMedCrossRef
28.
go back to reference Jeon HS, et al. Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer. 2012;76(2):171–6.PubMedCrossRef Jeon HS, et al. Combining microRNA-449a/b with a HDAC inhibitor has a synergistic effect on growth arrest in lung cancer. Lung Cancer. 2012;76(2):171–6.PubMedCrossRef
29.
go back to reference Li Z, et al. Epigenetic regulation of lung cancer cell proliferation and migration by the chromatin remodeling protein BRG1. Oncogenesis. 2019;8(11):66.PubMedPubMedCentralCrossRef Li Z, et al. Epigenetic regulation of lung cancer cell proliferation and migration by the chromatin remodeling protein BRG1. Oncogenesis. 2019;8(11):66.PubMedPubMedCentralCrossRef
30.
go back to reference Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1alpha in lung cancer cells through alternative splicing mechanism. Biochim Biophys Acta Mol Cell Res. 2019;1866(12):118550.PubMedCrossRef Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1alpha in lung cancer cells through alternative splicing mechanism. Biochim Biophys Acta Mol Cell Res. 2019;1866(12):118550.PubMedCrossRef
31.
go back to reference Yoo J, et al. Advances in histone demethylase KDM3A as a cancer therapeutic target. Cancers (Basel). 2020;12(5):1098.CrossRef Yoo J, et al. Advances in histone demethylase KDM3A as a cancer therapeutic target. Cancers (Basel). 2020;12(5):1098.CrossRef
32.
go back to reference Mimura I, Nangaku M. Epigenetics in kidney diseases. Rinsho Byori. 2014;62(2):180–9.PubMed Mimura I, Nangaku M. Epigenetics in kidney diseases. Rinsho Byori. 2014;62(2):180–9.PubMed
33.
go back to reference Mimura I, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012;32(15):3018–32.PubMedPubMedCentralCrossRef Mimura I, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol. 2012;32(15):3018–32.PubMedPubMedCentralCrossRef
34.
35.
go back to reference Meng H, et al. MiR-449a regulates the cell migration and invasion of human non-small cell lung carcinoma by targeting ADAM10. Onco Targets Ther. 2019;12:3829–38.PubMedPubMedCentralCrossRef Meng H, et al. MiR-449a regulates the cell migration and invasion of human non-small cell lung carcinoma by targeting ADAM10. Onco Targets Ther. 2019;12:3829–38.PubMedPubMedCentralCrossRef
36.
go back to reference You J, et al. MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer. 2014;51(Suppl 3):e77-81.PubMedCrossRef You J, et al. MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer. 2014;51(Suppl 3):e77-81.PubMedCrossRef
38.
go back to reference Dandawate P, et al. The histone demethylase KDM3A, increased in human pancreatic tumors, regulates expression of DCLK1 and promotes tumorigenesis in mice. Gastroenterology. 2019;157(6):1646-1659 e11.PubMedCrossRef Dandawate P, et al. The histone demethylase KDM3A, increased in human pancreatic tumors, regulates expression of DCLK1 and promotes tumorigenesis in mice. Gastroenterology. 2019;157(6):1646-1659 e11.PubMedCrossRef
40.
go back to reference Huang B, et al. The role of monoamine oxidase A in HPV-16 E7-induced epithelial-mesenchymal transition and HIF-1alpha protein accumulation in non-small cell lung cancer cells. Int J Biol Sci. 2020;16(14):2692–703.PubMedPubMedCentralCrossRef Huang B, et al. The role of monoamine oxidase A in HPV-16 E7-induced epithelial-mesenchymal transition and HIF-1alpha protein accumulation in non-small cell lung cancer cells. Int J Biol Sci. 2020;16(14):2692–703.PubMedPubMedCentralCrossRef
42.
go back to reference Ma H, et al. Anti-cancer effects of methanol-ethyl acetate partitioned fraction from Magnolia grandiflora in human non-small cell lung cancer H1975 cells. J Bioenerg Biomembr. 2020;52(3):175–83.PubMedCrossRef Ma H, et al. Anti-cancer effects of methanol-ethyl acetate partitioned fraction from Magnolia grandiflora in human non-small cell lung cancer H1975 cells. J Bioenerg Biomembr. 2020;52(3):175–83.PubMedCrossRef
43.
go back to reference Hu H, et al. YC-1 potentiates the antitumor activity of gefitinib by inhibiting HIF-1alpha and promoting the endocytic trafficking and degradation of EGFR in gefitinib-resistant non-small-cell lung cancer cells. Eur J Pharmacol. 2020;874:172961.PubMedCrossRef Hu H, et al. YC-1 potentiates the antitumor activity of gefitinib by inhibiting HIF-1alpha and promoting the endocytic trafficking and degradation of EGFR in gefitinib-resistant non-small-cell lung cancer cells. Eur J Pharmacol. 2020;874:172961.PubMedCrossRef
44.
go back to reference Wang LM, et al. Influence of miR-199a on rats with non-small cell lung cancer via regulating the HIF-1alpha/VEGF signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10363–9.PubMed Wang LM, et al. Influence of miR-199a on rats with non-small cell lung cancer via regulating the HIF-1alpha/VEGF signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10363–9.PubMed
45.
go back to reference Jin Y, et al. Long non-coding RNA CASC9 And HIF-1alpha form a positive feedback loop to facilitate cell proliferation and metastasis in lung cancer. Onco Targets Ther. 2019;12:9017–27.PubMedPubMedCentralCrossRef Jin Y, et al. Long non-coding RNA CASC9 And HIF-1alpha form a positive feedback loop to facilitate cell proliferation and metastasis in lung cancer. Onco Targets Ther. 2019;12:9017–27.PubMedPubMedCentralCrossRef
Metadata
Title
MicroRNA-449a delays lung cancer development through inhibiting KDM3A/HIF-1α axis
Authors
Shan Hu
Peng Cao
Kangle Kong
Peng Han
Yu Deng
Fan Li
Bo Zhao
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02881-8

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine