Skip to main content
Top
Published in: Cancer Immunology, Immunotherapy 1/2021

01-01-2021 | Lung Cancer | Original Article

Interleukin-38 promotes tumor growth through regulation of CD8+ tumor-infiltrating lymphocytes in lung cancer tumor microenvironment

Authors: Fumihiko Kinoshita, Tetsuzo Tagawa, Takaki Akamine, Kazuki Takada, Yuichi Yamada, Yuka Oku, Keisuke Kosai, Yuki Ono, Kensuke Tanaka, Sho Wakasu, Taro Oba, Atsushi Osoegawa, Mototsugu Shimokawa, Yoshinao Oda, Tomoaki Hoshino, Masaki Mori

Published in: Cancer Immunology, Immunotherapy | Issue 1/2021

Login to get access

Abstract

Background

Interleukin (IL)-38 was discovered in 2001 and is a member of the IL-1 family of cytokines. IL-38 shows anti-inflammatory activity in several inflammatory diseases. In lung adenocarcinoma, we previously demonstrated that high IL-38 expression in tumor cells was associated with poor prognosis. However, the role of IL-38 in the tumor microenvironment has not been clarified.

Methods

IL-38-plasmid-transfected Lewis lung carcinoma cells (LLC-IL38) and empty vector-transfected LLC cells (LLC-vector) were established. Cell proliferation in vitro and tumor growth in vivo were examined, and immunohistochemical staining was used to assess tumor-infiltrating lymphocytes (TILs). A CD8+ lymphocyte depletion model was established to show the association between IL-38 and CD8+ lymphocytes. Moreover, we examined the association between IL-38 expression and CD8+ TILs in human samples, analyzing immunohistochemical staining in 226 patients with radically resected lung adenocarcinoma.

Results

Tumor growth of LLC-IL38 in vivo was significantly increased compared with that of LLC-vector, although cell proliferation of LLC-IL38 in vitro was lower than that of LLC-vector. CD8+ TILs were significantly decreased in LLC-IL38 tumor compared with LLC-vector tumor. The difference in tumor growth between LLC-IL38 and LLC-vector became insignificant after depletion of CD8+ lymphocytes. In immunohistochemical staining in tissues from patients with lung adenocarcinoma, multivariate analysis showed high IL-38 expression was an independent negative predicter of high density of CD8+ TILs.

Conclusion

We demonstrated that high IL-38 expression in tumor cells was significantly associated with reduction of CD8+ TILs and tumor progression. These results suggest that IL-38 could be a therapeutic target for lung cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953CrossRef Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953CrossRef
2.
go back to reference Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRef Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhäufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crinò L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639CrossRef
3.
go back to reference Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G, Jr GM, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550 Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G, Jr GM, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550
4.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee JS, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265CrossRef Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, Cortinovis DL, Leach J, Polikoff J, Barrios C, Kabbinavar F, Frontera OA, De Marinis F, Turna H, Lee JS, Ballinger M, Kowanetz M, He P, Chen DS, Sandler A, Gandara DR (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265CrossRef
5.
go back to reference Sacher AG, Gandhi L (2016) Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol 2:1217–1222CrossRef Sacher AG, Gandhi L (2016) Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol 2:1217–1222CrossRef
6.
go back to reference Lin H, Ho AS, Haley-Vicente D, Zhang J, Bernal-Fussell J, Pace AM, Hansen D, Schweighofer K, Mize NK, Ford JE (2001) Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem 276:20597–20602CrossRef Lin H, Ho AS, Haley-Vicente D, Zhang J, Bernal-Fussell J, Pace AM, Hansen D, Schweighofer K, Mize NK, Ford JE (2001) Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem 276:20597–20602CrossRef
7.
go back to reference Bensen JT, Dawson PA, Mychaleckyj JC, Bowden DW (2001) Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J Interferon Cytokine Res 21:899–904CrossRef Bensen JT, Dawson PA, Mychaleckyj JC, Bowden DW (2001) Identification of a novel human cytokine gene in the interleukin gene cluster on chromosome 2q12-14. J Interferon Cytokine Res 21:899–904CrossRef
8.
go back to reference Tominaga M, Okamoto M, Kawayama T, Matsuoka M, Kaieda S, Sakazaki Y, Kinoshita T, Mori D, Inoue A, Hoshino T (2017) Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig 55:293–299CrossRef Tominaga M, Okamoto M, Kawayama T, Matsuoka M, Kaieda S, Sakazaki Y, Kinoshita T, Mori D, Inoue A, Hoshino T (2017) Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis. Respir Investig 55:293–299CrossRef
9.
go back to reference van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, Joosten LA, van der Meer JW, Hao R, Kalabokis V, Dinarello CA (2012) IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci USA 109:3001–3005CrossRef van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, Joosten LA, van der Meer JW, Hao R, Kalabokis V, Dinarello CA (2012) IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci USA 109:3001–3005CrossRef
10.
go back to reference Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, Olleros ML, Vesin D, Garcia I, Ronchi F, Sallusto F, Sims JE, Gabay C (2012) IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4 T cells. Blood 120:3478–3487CrossRef Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, Olleros ML, Vesin D, Garcia I, Ronchi F, Sallusto F, Sims JE, Gabay C (2012) IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4 T cells. Blood 120:3478–3487CrossRef
11.
go back to reference Ding L, Wang X, Hong X, Lu L, Liu D (2017) IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget 9:2895–2901CrossRef Ding L, Wang X, Hong X, Lu L, Liu D (2017) IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget 9:2895–2901CrossRef
13.
go back to reference Takenaka S, Kaieda S, Kawayama T, Matsuoka M, Kaku Y, Kinoshita T, Sakazaki Y, Okamoto M, Tominaga M, Kanesaki K, Chiba A, Miyake S, Ida H, Hoshino T (2015) IL-38: a new factor in rheumatoid arthritis. Biochem Biophys Rep 4:386–391PubMedPubMedCentral Takenaka S, Kaieda S, Kawayama T, Matsuoka M, Kaku Y, Kinoshita T, Sakazaki Y, Okamoto M, Tominaga M, Kanesaki K, Chiba A, Miyake S, Ida H, Hoshino T (2015) IL-38: a new factor in rheumatoid arthritis. Biochem Biophys Rep 4:386–391PubMedPubMedCentral
14.
go back to reference Takada K, Okamoto T, Tominaga M, Teraishi K, Akamine T, Takamori S, Katsura M, Toyokawa G, Shoji F, Okamoto M, Oda Y, Hoshino T, Maehara Y (2017) Clinical implications of the novel cytokine IL-38 expressed in lung adenocarcinoma: possible association with PD-L1 expression. PLoS ONE 12:e0181598CrossRef Takada K, Okamoto T, Tominaga M, Teraishi K, Akamine T, Takamori S, Katsura M, Toyokawa G, Shoji F, Okamoto M, Oda Y, Hoshino T, Maehara Y (2017) Clinical implications of the novel cytokine IL-38 expressed in lung adenocarcinoma: possible association with PD-L1 expression. PLoS ONE 12:e0181598CrossRef
16.
go back to reference Ostroumov D, Fekete-Drimusz N, Saborowski M, Kuhnel F, Woller N (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75:689–713CrossRef Ostroumov D, Fekete-Drimusz N, Saborowski M, Kuhnel F, Woller N (2018) CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 75:689–713CrossRef
17.
go back to reference Zeng DQ, Yu YF, Ou QY, Li XY, Zhong RZ, Xie CM, Hu QG (2016) Prognostic and predictive value of TILs for clinical therapeutic research in patients with NSCLC. Oncotarget 7:13765–13781CrossRef Zeng DQ, Yu YF, Ou QY, Li XY, Zhong RZ, Xie CM, Hu QG (2016) Prognostic and predictive value of TILs for clinical therapeutic research in patients with NSCLC. Oncotarget 7:13765–13781CrossRef
18.
go back to reference Geng Y, Shao Y, He W, Hu W, Xu Y, Chen J, Wu C, Jiang J (2015) Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem 37:1560–1571CrossRef Geng Y, Shao Y, He W, Hu W, Xu Y, Chen J, Wu C, Jiang J (2015) Prognostic role of tumor-infiltrating lymphocytes in lung cancer: a meta-analysis. Cell Physiol Biochem 37:1560–1571CrossRef
19.
go back to reference Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putyrski M, Schuster C, Elwakeel E, Lang G, Scholz A, Scholz T, Schmid T, de Bruin N, Billuart P, Sala C, Burkhardt H, Parnham MJ, Ernst A, Brüne B, Weigert A (2019) IL-38 ameliorates skin inflammation and limits IL-17 production from γδ T Cells. Cell Rep 27:835–846CrossRef Han Y, Mora J, Huard A, da Silva P, Wiechmann S, Putyrski M, Schuster C, Elwakeel E, Lang G, Scholz A, Scholz T, Schmid T, de Bruin N, Billuart P, Sala C, Burkhardt H, Parnham MJ, Ernst A, Brüne B, Weigert A (2019) IL-38 ameliorates skin inflammation and limits IL-17 production from γδ T Cells. Cell Rep 27:835–846CrossRef
20.
go back to reference Bhat P, Leggatt G, Waterhouse N, Frazer IH (2017) Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis 8:e2836CrossRef Bhat P, Leggatt G, Waterhouse N, Frazer IH (2017) Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis 8:e2836CrossRef
21.
go back to reference Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101CrossRef Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101CrossRef
22.
go back to reference Giovarelli M, Santoni A, Jemma C, Musso T, Giuffrida AM, Cavallo G, Landolfo S, Forni G (1988) Obligatory role of IFN-gamma in induction of lymphokine-activated and T lymphocyte killer activity, but not in boosting of natural cytotoxicity. J Immunol 141:2831–2836PubMed Giovarelli M, Santoni A, Jemma C, Musso T, Giuffrida AM, Cavallo G, Landolfo S, Forni G (1988) Obligatory role of IFN-gamma in induction of lymphokine-activated and T lymphocyte killer activity, but not in boosting of natural cytotoxicity. J Immunol 141:2831–2836PubMed
23.
go back to reference Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371CrossRef Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371CrossRef
24.
go back to reference Lejeune FJ (2002) Clinical use of TNF revisited: improving penetration of anti-cancer agents by increasing vascular permeability. J Clin Invest 110:433–435CrossRef Lejeune FJ (2002) Clinical use of TNF revisited: improving penetration of anti-cancer agents by increasing vascular permeability. J Clin Invest 110:433–435CrossRef
25.
go back to reference Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ, Dong C (2014) T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci USA 111:5664–5669CrossRef Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ, Dong C (2014) T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci USA 111:5664–5669CrossRef
26.
go back to reference Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149CrossRef Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149CrossRef
27.
go back to reference Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798CrossRef Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798CrossRef
Metadata
Title
Interleukin-38 promotes tumor growth through regulation of CD8+ tumor-infiltrating lymphocytes in lung cancer tumor microenvironment
Authors
Fumihiko Kinoshita
Tetsuzo Tagawa
Takaki Akamine
Kazuki Takada
Yuichi Yamada
Yuka Oku
Keisuke Kosai
Yuki Ono
Kensuke Tanaka
Sho Wakasu
Taro Oba
Atsushi Osoegawa
Mototsugu Shimokawa
Yoshinao Oda
Tomoaki Hoshino
Masaki Mori
Publication date
01-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Cancer Immunology, Immunotherapy / Issue 1/2021
Print ISSN: 0340-7004
Electronic ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-020-02659-9

Other articles of this Issue 1/2021

Cancer Immunology, Immunotherapy 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine