Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Lung Cancer | Research

Exercise accelerates recruitment of CD8+ T cell to promotes anti-tumor immunity in lung cancer via epinephrine

Authors: Sai-Nan Miao, Meng-Qi Chai, Xiang-Yu Liu, Cheng-Yu Wei, Cun-Cun Zhang, Ning-Ning Sun, Qing-Ze Fei, Lin-Lin Peng, Huan Qiu

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background and purpose

In recent years, there has been extensive research on the role of exercise as an adjunctive therapy for cancer. However, the potential mechanisms underlying the anti-tumor therapy of exercise in lung cancer remain to be fully elucidated. As such, our study aims to confirm whether exercise-induced elevation of epinephrine can accelerate CD8+ T cell recruitment through modulation of chemokines and thus ultimately inhibit tumor progression.

Method

C57BL/6 mice were subcutaneously inoculated with Lewis lung cancer cells (LLCs) to establish a subcutaneous tumor model. The tumor mice were randomly divided into different groups to performed a moderate-intensity exercise program on a treadmill for 5 consecutive days a week, 45 min a day. The blood samples and tumor tissues were collected after exercise for IHC, RT-qPCR, ELISA and Western blot. In addition, another group of mice received daily epinephrine treatment for two weeks (0.05 mg/mL, 200 µL i.p.) (EPI, n = 8) to replicate the effects of exercise on tumors in vivo. Lewis lung cancer cells were treated with different concentrations of epinephrine (0, 5, 10, 20 µM) to detect the effect of epinephrine on chemokine levels via ELISA and RT-qPCR.

Results

This study reveals that both pre- and post-cancer exercise effectively impede the tumor progression. Exercise led to an increase in EPI levels and the infiltration of CD8+ T cell into the lung tumor. Exercise-induced elevation of EPI is involved in the regulation of Ccl5 and Cxcl10 levels further leading to enhanced CD8+ T cell infiltration and ultimately inhibiting tumor progression.

Conclusion

Exercise training enhance the anti-tumor immunity of lung cancer individuals. These findings will provide valuable insights for the future application of exercise therapy in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.PubMedCrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.PubMedCrossRef
2.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef
3.
go back to reference Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021;25(1):45–52.PubMed Thandra KC, Barsouk A, Saginala K, Aluru JS, Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021;25(1):45–52.PubMed
4.
go back to reference Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624–39.PubMedCrossRef Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624–39.PubMedCrossRef
5.
go back to reference Nooreldeen R, Bach H. Current and Future Development in Lung Cancer diagnosis. Int J Mol Sci. 2021;22(16). Nooreldeen R, Bach H. Current and Future Development in Lung Cancer diagnosis. Int J Mol Sci. 2021;22(16).
6.
go back to reference Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect. Curr Opin Oncol. 2021;33(1):40–6.PubMedCrossRef Wu F, Wang L, Zhou C. Lung cancer in China: current and prospect. Curr Opin Oncol. 2021;33(1):40–6.PubMedCrossRef
7.
go back to reference Matthews CE, Moore SC, Arem H, Cook MB, Trabert B, Håkansson N, Larsson SC, Wolk A, Gapstur SM, Lynch BM, et al. Amount and intensity of leisure-time physical activity and Lower Cancer Risk. J Clin Oncol. 2020;38(7):686–97.PubMedCrossRef Matthews CE, Moore SC, Arem H, Cook MB, Trabert B, Håkansson N, Larsson SC, Wolk A, Gapstur SM, Lynch BM, et al. Amount and intensity of leisure-time physical activity and Lower Cancer Risk. J Clin Oncol. 2020;38(7):686–97.PubMedCrossRef
8.
go back to reference Cavalheri V, Granger CL. Exercise training as part of lung cancer therapy. Respirol (Carlton Vic). 2020;25(Suppl 2):80–7.CrossRef Cavalheri V, Granger CL. Exercise training as part of lung cancer therapy. Respirol (Carlton Vic). 2020;25(Suppl 2):80–7.CrossRef
9.
go back to reference Peddle-McIntyre CJ, Singh F, Thomas R, Newton RU, Galvão DA, Cavalheri V. Exercise training for advanced lung cancer. Cochrane Database Syst Rev. 2019;2(2):Cd012685.PubMed Peddle-McIntyre CJ, Singh F, Thomas R, Newton RU, Galvão DA, Cavalheri V. Exercise training for advanced lung cancer. Cochrane Database Syst Rev. 2019;2(2):Cd012685.PubMed
10.
go back to reference Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, et al. Association of leisure-time physical activity with risk of 26 types of Cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–25.PubMedPubMedCentralCrossRef Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, et al. Association of leisure-time physical activity with risk of 26 types of Cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–25.PubMedPubMedCentralCrossRef
11.
go back to reference Zhu C, Ma H, He A, Li Y, He C, Xia Y. Exercise in cancer prevention and anticancer therapy: efficacy, molecular mechanisms and clinical information. Cancer Lett. 2022;544:215814.PubMedCrossRef Zhu C, Ma H, He A, Li Y, He C, Xia Y. Exercise in cancer prevention and anticancer therapy: efficacy, molecular mechanisms and clinical information. Cancer Lett. 2022;544:215814.PubMedCrossRef
12.
go back to reference Genova C, Dellepiane C, Carrega P, Sommariva S, Ferlazzo G, Pronzato P, Gangemi R, Filaci G, Coco S, Croce M. Therapeutic implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Front Immunol. 2021;12:799455.PubMedCrossRef Genova C, Dellepiane C, Carrega P, Sommariva S, Ferlazzo G, Pronzato P, Gangemi R, Filaci G, Coco S, Croce M. Therapeutic implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Front Immunol. 2021;12:799455.PubMedCrossRef
13.
go back to reference Gueguen P, Metoikidou C, Dupic T, Lawand M, Goudot C, Baulande S, Lameiras S, Lantz O, Girard N, Seguin-Givelet A et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8(+) T cell populations in lung cancer. Sci Immunol. 2021;6(55). Gueguen P, Metoikidou C, Dupic T, Lawand M, Goudot C, Baulande S, Lameiras S, Lantz O, Girard N, Seguin-Givelet A et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8(+) T cell populations in lung cancer. Sci Immunol. 2021;6(55).
14.
go back to reference Jie X, Chen Y, Zhao Y, Yang X, Xu Y, Wang J, Meng R, Zhang S, Dong X, Zhang T et al. Targeting KDM4C enhances CD8(+) T cell mediated antitumor immunity by activating chemokine CXCL10 transcription in lung cancer. J Immunother Cancer. 2022;10(2). Jie X, Chen Y, Zhao Y, Yang X, Xu Y, Wang J, Meng R, Zhang S, Dong X, Zhang T et al. Targeting KDM4C enhances CD8(+) T cell mediated antitumor immunity by activating chemokine CXCL10 transcription in lung cancer. J Immunother Cancer. 2022;10(2).
15.
go back to reference Forte P, Branquinho L, Ferraz R. The relationships between Physical Activity, Exercise, and Sport on the Immune System. 2022;19(11):6777. Forte P, Branquinho L, Ferraz R. The relationships between Physical Activity, Exercise, and Sport on the Immune System. 2022;19(11):6777.
16.
go back to reference Lavín-Pérez AM, Collado-Mateo D, Abbasi S, Ferreira-Júnior JB, Hekmatikar AHA. Effects of exercise on immune cells with tumor-specific activity in breast cancer patients and survivors: a systematic review and meta-analysis. Support Care Cancer. 2023;31(9):507.PubMedCrossRef Lavín-Pérez AM, Collado-Mateo D, Abbasi S, Ferreira-Júnior JB, Hekmatikar AHA. Effects of exercise on immune cells with tumor-specific activity in breast cancer patients and survivors: a systematic review and meta-analysis. Support Care Cancer. 2023;31(9):507.PubMedCrossRef
17.
go back to reference Hagar A, Wang Z, Koyama S, Serrano JA, Melo L, Vargas S, Carpenter R, Foley J. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer. 2019;19(1):536.PubMedPubMedCentralCrossRef Hagar A, Wang Z, Koyama S, Serrano JA, Melo L, Vargas S, Carpenter R, Foley J. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer. 2019;19(1):536.PubMedPubMedCentralCrossRef
18.
go back to reference Rundqvist H, Veliça P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, Mijwel S, Reitzner SM, Wulliman D, Ahlstedt E, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife. 2020;9:e59996.PubMedPubMedCentralCrossRef Rundqvist H, Veliça P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, Mijwel S, Reitzner SM, Wulliman D, Ahlstedt E, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife. 2020;9:e59996.PubMedPubMedCentralCrossRef
19.
go back to reference Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking Exercise to Cancer Prevention and Treatment. Cell Metab. 2018;27(1):10–21.PubMedCrossRef Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking Exercise to Cancer Prevention and Treatment. Cell Metab. 2018;27(1):10–21.PubMedCrossRef
20.
go back to reference Kurz E, Hirsch CA, Dalton T, Shadaloey SA, Khodadadi-Jamayran A, Miller G, Pareek S, Rajaei H, Mohindroo C, Baydogan S, et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell. 2022;40(7):720–e737725.PubMedPubMedCentralCrossRef Kurz E, Hirsch CA, Dalton T, Shadaloey SA, Khodadadi-Jamayran A, Miller G, Pareek S, Rajaei H, Mohindroo C, Baydogan S, et al. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer. Cancer Cell. 2022;40(7):720–e737725.PubMedPubMedCentralCrossRef
21.
go back to reference Dethlefsen C, Hansen LS, Lillelund C, Andersen C, Gehl J, Christensen JF, Pedersen BK, Hojman P. Exercise-Induced catecholamines activate the Hippo Tumor Suppressor Pathway to reduce risks of breast Cancer Development. Cancer Res. 2017;77(18):4894–904.PubMedCrossRef Dethlefsen C, Hansen LS, Lillelund C, Andersen C, Gehl J, Christensen JF, Pedersen BK, Hojman P. Exercise-Induced catecholamines activate the Hippo Tumor Suppressor Pathway to reduce risks of breast Cancer Development. Cancer Res. 2017;77(18):4894–904.PubMedCrossRef
22.
go back to reference Holmen Olofsson G, Mikkelsen MK, Ragle A-M, Christiansen AB, Olsen AP, Heide-Ottosen L, Horsted CB, Pedersen CMS, Engell-Noerregaard L, Lorentzen T, et al. High intensity aerobic exercise training and Immune cell mobilization in patients with lung cancer (HI AIM)—a randomized controlled trial. BMC Cancer. 2022;22(1):246.PubMedPubMedCentralCrossRef Holmen Olofsson G, Mikkelsen MK, Ragle A-M, Christiansen AB, Olsen AP, Heide-Ottosen L, Horsted CB, Pedersen CMS, Engell-Noerregaard L, Lorentzen T, et al. High intensity aerobic exercise training and Immune cell mobilization in patients with lung cancer (HI AIM)—a randomized controlled trial. BMC Cancer. 2022;22(1):246.PubMedPubMedCentralCrossRef
23.
go back to reference Liu J, Li F, Ping Y, Wang L, Chen X, Wang D, Cao L, Zhao S, Li B, Kalinski P, et al. Local production of the chemokines CCL5 and CXCL10 attracts CD8 + T lymphocytes into esophageal squamous cell carcinoma. Oncotarget. 2015;6(28):24978–89.PubMedPubMedCentralCrossRef Liu J, Li F, Ping Y, Wang L, Chen X, Wang D, Cao L, Zhao S, Li B, Kalinski P, et al. Local production of the chemokines CCL5 and CXCL10 attracts CD8 + T lymphocytes into esophageal squamous cell carcinoma. Oncotarget. 2015;6(28):24978–89.PubMedPubMedCentralCrossRef
24.
go back to reference Martín-Ruiz A, Fiuza-Luces C, Rincón-Castanedo C, Fernández-Moreno D, Gálvez BG, Martínez-Martínez E, Martín-Acosta P, Coronado MJ, Franco-Luzón L, González-Murillo Á, et al. Benefits of exercise and immunotherapy in a murine model of human non-small-cell lung carcinoma. Exerc Immunol Rev. 2020;26:100–15.PubMed Martín-Ruiz A, Fiuza-Luces C, Rincón-Castanedo C, Fernández-Moreno D, Gálvez BG, Martínez-Martínez E, Martín-Acosta P, Coronado MJ, Franco-Luzón L, González-Murillo Á, et al. Benefits of exercise and immunotherapy in a murine model of human non-small-cell lung carcinoma. Exerc Immunol Rev. 2020;26:100–15.PubMed
25.
go back to reference Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, et al. Voluntary running suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell mobilization and redistribution. Cell Metabol. 2016;23(3):554–62.CrossRef Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, et al. Voluntary running suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell mobilization and redistribution. Cell Metabol. 2016;23(3):554–62.CrossRef
26.
go back to reference Baharom F, Ramirez-Valdez RA, Khalilnezhad A, Khalilnezhad S, Dillon M, Hermans D, Fussell S, Tobin KKS, Dutertre CA, Lynn GM, et al. Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment. Cell. 2022;185(23):4317–e43324315.PubMedPubMedCentralCrossRef Baharom F, Ramirez-Valdez RA, Khalilnezhad A, Khalilnezhad S, Dillon M, Hermans D, Fussell S, Tobin KKS, Dutertre CA, Lynn GM, et al. Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment. Cell. 2022;185(23):4317–e43324315.PubMedPubMedCentralCrossRef
27.
go back to reference D’Alterio C, Buoncervello M, Ieranò C, Napolitano M, Portella L, Rea G, Barbieri A, Luciano A, Scognamiglio G, Tatangelo F, et al. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. J Exp Clin Cancer Res. 2019;38(1):432.PubMedPubMedCentralCrossRef D’Alterio C, Buoncervello M, Ieranò C, Napolitano M, Portella L, Rea G, Barbieri A, Luciano A, Scognamiglio G, Tatangelo F, et al. Targeting CXCR4 potentiates anti-PD-1 efficacy modifying the tumor microenvironment and inhibiting neoplastic PD-1. J Exp Clin Cancer Res. 2019;38(1):432.PubMedPubMedCentralCrossRef
28.
go back to reference Bezman NA, Jhatakia A, Kearney AY, Brender T, Maurer M, Henning K, Jenkins MR, Rogers AJ, Neeson PJ, Korman AJ, et al. PD-1 blockade enhances elotuzumab efficacy in mouse tumor models. Blood Adv. 2017;1(12):753–65.PubMedPubMedCentralCrossRef Bezman NA, Jhatakia A, Kearney AY, Brender T, Maurer M, Henning K, Jenkins MR, Rogers AJ, Neeson PJ, Korman AJ, et al. PD-1 blockade enhances elotuzumab efficacy in mouse tumor models. Blood Adv. 2017;1(12):753–65.PubMedPubMedCentralCrossRef
29.
go back to reference Nagel JE, Smith RJ, Shaw L, Bertak D, Dixit VD, Schaffer EM, Taub DD. Identification of genes differentially expressed in T cells following stimulation with the chemokines CXCL12 and CXCL10. BMC Immunol. 2004;5:17.PubMedPubMedCentralCrossRef Nagel JE, Smith RJ, Shaw L, Bertak D, Dixit VD, Schaffer EM, Taub DD. Identification of genes differentially expressed in T cells following stimulation with the chemokines CXCL12 and CXCL10. BMC Immunol. 2004;5:17.PubMedPubMedCentralCrossRef
30.
go back to reference Wang Z, Moresco P, Yan R, Li J, Gao Y, Biasci D, Yao M, Pearson J, Hechtman JF, Janowitz T et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc Natl Acad Sci U S A. 2022;119(4). Wang Z, Moresco P, Yan R, Li J, Gao Y, Biasci D, Yao M, Pearson J, Hechtman JF, Janowitz T et al. Carcinomas assemble a filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated immune attack. Proc Natl Acad Sci U S A. 2022;119(4).
31.
go back to reference Zhang Y, Lazarus J, Steele NG, Yan W, Lee HJ, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB, Sirihorachai VR, et al. Regulatory T-cell depletion alters the Tumor Microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10(3):422–39.PubMedPubMedCentralCrossRef Zhang Y, Lazarus J, Steele NG, Yan W, Lee HJ, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB, Sirihorachai VR, et al. Regulatory T-cell depletion alters the Tumor Microenvironment and accelerates pancreatic carcinogenesis. Cancer Discov. 2020;10(3):422–39.PubMedPubMedCentralCrossRef
32.
go back to reference Lee HT, Liu SP, Lin CH, Lee SW, Hsu CY, Sytwu HK, Hsieh CH, Shyu WC. A crucial role of CXCL14 for promoting Regulatory T cells activation in stroke. Theranostics. 2017;7(4):855–75.PubMedPubMedCentralCrossRef Lee HT, Liu SP, Lin CH, Lee SW, Hsu CY, Sytwu HK, Hsieh CH, Shyu WC. A crucial role of CXCL14 for promoting Regulatory T cells activation in stroke. Theranostics. 2017;7(4):855–75.PubMedPubMedCentralCrossRef
33.
go back to reference Mulet M, Zamora C, Porcel JM, Nieto JC, Pajares V, Muñoz-Fernandez AM, Calvo N, Esquerda A, Vidal S. Platelet factor 4 regulates T cell effector functions in malignant pleural effusions. Cancer Lett. 2020;491:78–86.PubMedCrossRef Mulet M, Zamora C, Porcel JM, Nieto JC, Pajares V, Muñoz-Fernandez AM, Calvo N, Esquerda A, Vidal S. Platelet factor 4 regulates T cell effector functions in malignant pleural effusions. Cancer Lett. 2020;491:78–86.PubMedCrossRef
34.
go back to reference Yu Y, Tian X. Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases. Med (Baltim). 2020;99(19):e20183.CrossRef Yu Y, Tian X. Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases. Med (Baltim). 2020;99(19):e20183.CrossRef
35.
go back to reference Farmaki E, Kaza V, Chatzistamou I, Kiaris H. CCL8 promotes postpartum breast Cancer by recruiting M2 macrophages. iScience. 2020;23(6). Farmaki E, Kaza V, Chatzistamou I, Kiaris H. CCL8 promotes postpartum breast Cancer by recruiting M2 macrophages. iScience. 2020;23(6).
36.
go back to reference Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q, Cui Y. Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev. 2023. Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q, Cui Y. Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev. 2023.
37.
go back to reference Chang TM, Chiang YC, Lee CW, Lin CM, Fang ML, Chi MC, Liu JF, Kou YR. CXCL14 promotes metastasis of non-small cell lung cancer through ACKR2-depended signaling pathway. Int J Biol Sci. 2023;19(5):1455–70.PubMedPubMedCentralCrossRef Chang TM, Chiang YC, Lee CW, Lin CM, Fang ML, Chi MC, Liu JF, Kou YR. CXCL14 promotes metastasis of non-small cell lung cancer through ACKR2-depended signaling pathway. Int J Biol Sci. 2023;19(5):1455–70.PubMedPubMedCentralCrossRef
38.
go back to reference Shusterman A, Munz M, Richter G, Jepsen S, Lieb W, Krone B, Hoffman P, Laudes M, Wellmann J, Berger K, et al. The PF4/PPBP/CXCL5 gene cluster is Associated with Periodontitis. J Dent Res. 2017;96(8):945–52.PubMedPubMedCentralCrossRef Shusterman A, Munz M, Richter G, Jepsen S, Lieb W, Krone B, Hoffman P, Laudes M, Wellmann J, Berger K, et al. The PF4/PPBP/CXCL5 gene cluster is Associated with Periodontitis. J Dent Res. 2017;96(8):945–52.PubMedPubMedCentralCrossRef
39.
go back to reference Yan W, Qiu L, Yang M, Xu A, Ma M, Yuan Q, Ma X, Liang W, Li X, Lu Y. CXCL10 mediates CD8(+) T cells to facilitate vessel normalization and improve the efficacy of cetuximab combined with PD-1 checkpoint inhibitors in colorectal cancer. Cancer Lett. 2023;567:216263.PubMedCrossRef Yan W, Qiu L, Yang M, Xu A, Ma M, Yuan Q, Ma X, Liang W, Li X, Lu Y. CXCL10 mediates CD8(+) T cells to facilitate vessel normalization and improve the efficacy of cetuximab combined with PD-1 checkpoint inhibitors in colorectal cancer. Cancer Lett. 2023;567:216263.PubMedCrossRef
40.
go back to reference Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–72.PubMedPubMedCentralCrossRef Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–72.PubMedPubMedCentralCrossRef
41.
go back to reference Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci. 2021;22:18.CrossRef Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci. 2021;22:18.CrossRef
42.
go back to reference Gomes-Santos IL, Amoozgar Z, Kumar AS, Ho WW, Roh K, Talele NP, Curtis H, Kawaguchi K, Jain RK, Fukumura D. Exercise Training improves Tumor Control by increasing CD8(+) T-cell infiltration via CXCR3 signaling and sensitizes breast Cancer to Immune Checkpoint Blockade. Cancer Immunol Res. 2021;9(7):765–78.PubMedPubMedCentralCrossRef Gomes-Santos IL, Amoozgar Z, Kumar AS, Ho WW, Roh K, Talele NP, Curtis H, Kawaguchi K, Jain RK, Fukumura D. Exercise Training improves Tumor Control by increasing CD8(+) T-cell infiltration via CXCR3 signaling and sensitizes breast Cancer to Immune Checkpoint Blockade. Cancer Immunol Res. 2021;9(7):765–78.PubMedPubMedCentralCrossRef
43.
go back to reference St Paul M, Ohashi PS. The roles of CD8(+) T cell subsets in Antitumor Immunity. Trends Cell Biol. 2020;30(9):695–704.PubMedCrossRef St Paul M, Ohashi PS. The roles of CD8(+) T cell subsets in Antitumor Immunity. Trends Cell Biol. 2020;30(9):695–704.PubMedCrossRef
44.
go back to reference Ding H, Wang G, Yu Z, Sun H, Wang L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother. 2022;155:113683.PubMedCrossRef Ding H, Wang G, Yu Z, Sun H, Wang L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother. 2022;155:113683.PubMedCrossRef
45.
go back to reference Huang H, Yu H, Li X, Li Y, Zhu G, Su L, Li M, Chen C, Gao M, Wu D, et al. Genomic analysis of TNF-related genes with prognosis and characterization of the tumor immune microenvironment in lung adenocarcinoma. Front Immunol. 2022;13:993890.PubMedPubMedCentralCrossRef Huang H, Yu H, Li X, Li Y, Zhu G, Su L, Li M, Chen C, Gao M, Wu D, et al. Genomic analysis of TNF-related genes with prognosis and characterization of the tumor immune microenvironment in lung adenocarcinoma. Front Immunol. 2022;13:993890.PubMedPubMedCentralCrossRef
46.
go back to reference Wu Y, Hao X, Wei H, Sun R, Chen Y, Tian Z. Blockade of T-cell receptor with ig and ITIM domains elicits potent antitumor immunity in naturally occurring HBV-related HCC in mice. Hepatology. 2023;77(3):965–81.PubMedCrossRef Wu Y, Hao X, Wei H, Sun R, Chen Y, Tian Z. Blockade of T-cell receptor with ig and ITIM domains elicits potent antitumor immunity in naturally occurring HBV-related HCC in mice. Hepatology. 2023;77(3):965–81.PubMedCrossRef
47.
go back to reference Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, van Nimwegen M, Lau SP, Latupeirissa K, Schetters S, et al. The PD-1/PD-L1-Checkpoint restrains T cell immunity in Tumor-Draining Lymph Nodes. Cancer Cell. 2020;38(5):685–e700688.PubMedCrossRef Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, van Nimwegen M, Lau SP, Latupeirissa K, Schetters S, et al. The PD-1/PD-L1-Checkpoint restrains T cell immunity in Tumor-Draining Lymph Nodes. Cancer Cell. 2020;38(5):685–e700688.PubMedCrossRef
48.
go back to reference Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, et al. Targeting DNA damage response promotes Antitumor immunity through STING-Mediated T-cell activation in small cell Lung Cancer. Cancer Discov. 2019;9(5):646–61.PubMedPubMedCentralCrossRef Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, et al. Targeting DNA damage response promotes Antitumor immunity through STING-Mediated T-cell activation in small cell Lung Cancer. Cancer Discov. 2019;9(5):646–61.PubMedPubMedCentralCrossRef
49.
go back to reference Guo G, Yu M, Xiao W, Celis E, Cui Y. Local activation of p53 in the Tumor Microenvironment overcomes Immune suppression and enhances Antitumor Immunity. Cancer Res. 2017;77(9):2292–305.PubMedPubMedCentralCrossRef Guo G, Yu M, Xiao W, Celis E, Cui Y. Local activation of p53 in the Tumor Microenvironment overcomes Immune suppression and enhances Antitumor Immunity. Cancer Res. 2017;77(9):2292–305.PubMedPubMedCentralCrossRef
50.
go back to reference Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Compr Physiol. 2015;5(1):1–15.PubMed Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Compr Physiol. 2015;5(1):1–15.PubMed
51.
go back to reference Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress. 2016;19(4):419–28.PubMedCrossRef Krizanova O, Babula P, Pacak K. Stress, catecholaminergic system and cancer. Stress. 2016;19(4):419–28.PubMedCrossRef
52.
go back to reference Steiner JL, Johnson BR, Hickner RC, Ormsbee MJ, Williamson DL, Gordon BS. Adrenal stress hormone action in skeletal muscle during exercise training: an old dog with new tricks? Acta Physiol (Oxf). 2021;231(1):e13522.PubMedCrossRef Steiner JL, Johnson BR, Hickner RC, Ormsbee MJ, Williamson DL, Gordon BS. Adrenal stress hormone action in skeletal muscle during exercise training: an old dog with new tricks? Acta Physiol (Oxf). 2021;231(1):e13522.PubMedCrossRef
53.
go back to reference Graff RM, Kunz HE, Agha NH, Baker FL, Laughlin M, Bigley AB, Markofski MM, LaVoy EC, Katsanis E, Bond RA, et al. β(2)-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8 + T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav Immun. 2018;74:143–53.PubMedCrossRef Graff RM, Kunz HE, Agha NH, Baker FL, Laughlin M, Bigley AB, Markofski MM, LaVoy EC, Katsanis E, Bond RA, et al. β(2)-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8 + T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav Immun. 2018;74:143–53.PubMedCrossRef
54.
go back to reference Jensen AWP, Carnaz Simões AM, Thor Straten P, Holmen Olofsson G. Adrenergic signaling in Immunotherapy of Cancer: friend or foe? Cancers (Basel). 2021;13(3). Jensen AWP, Carnaz Simões AM, Thor Straten P, Holmen Olofsson G. Adrenergic signaling in Immunotherapy of Cancer: friend or foe? Cancers (Basel). 2021;13(3).
55.
go back to reference Jee H, Park E, Hur K, Kang M, Kim Y. High-intensity Aerobic Exercise suppresses Cancer Growth by regulating skeletal muscle-derived oncogenes and Tumor suppressors. Front Mol Biosci. 2022;9:818470.PubMedPubMedCentralCrossRef Jee H, Park E, Hur K, Kang M, Kim Y. High-intensity Aerobic Exercise suppresses Cancer Growth by regulating skeletal muscle-derived oncogenes and Tumor suppressors. Front Mol Biosci. 2022;9:818470.PubMedPubMedCentralCrossRef
56.
go back to reference Kawanishi N, Mizokami T, Yano H, Suzuki K. Exercise attenuates M1 macrophages and CD8 + T cells in the adipose tissue of obese mice. Med Sci Sports Exerc. 2013;45(9):1684–93.PubMedCrossRef Kawanishi N, Mizokami T, Yano H, Suzuki K. Exercise attenuates M1 macrophages and CD8 + T cells in the adipose tissue of obese mice. Med Sci Sports Exerc. 2013;45(9):1684–93.PubMedCrossRef
57.
go back to reference Tobias GC, Gomes JLP, Fernandes LG, Voltarelli VA, de Almeida NR, Jannig PR, de Souza RWA, Negrão CE, Oliveira EM, Chammas R, et al. Aerobic exercise training mitigates tumor growth and cancer-induced splenomegaly through modulation of non-platelet platelet factor 4 expression. Sci Rep. 2023;13(1):21970.PubMedPubMedCentralCrossRef Tobias GC, Gomes JLP, Fernandes LG, Voltarelli VA, de Almeida NR, Jannig PR, de Souza RWA, Negrão CE, Oliveira EM, Chammas R, et al. Aerobic exercise training mitigates tumor growth and cancer-induced splenomegaly through modulation of non-platelet platelet factor 4 expression. Sci Rep. 2023;13(1):21970.PubMedPubMedCentralCrossRef
58.
go back to reference Rundqvist H, Veliça P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, Mijwel S, Reitzner SM, Wulliman D, Ahlstedt E et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife. 2020;9. Rundqvist H, Veliça P, Barbieri L, Gameiro PA, Bargiela D, Gojkovic M, Mijwel S, Reitzner SM, Wulliman D, Ahlstedt E et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife. 2020;9.
59.
go back to reference Witard OC, Turner JE, Jackman SR, Tipton KD, Jeukendrup AE, Kies AK, Bosch JA. High-intensity training reduces CD8 + T-cell redistribution in response to exercise. Med Sci Sports Exerc. 2012;44(9):1689–97.PubMedCrossRef Witard OC, Turner JE, Jackman SR, Tipton KD, Jeukendrup AE, Kies AK, Bosch JA. High-intensity training reduces CD8 + T-cell redistribution in response to exercise. Med Sci Sports Exerc. 2012;44(9):1689–97.PubMedCrossRef
60.
go back to reference Bigley AB, Rezvani K, Chew C, Sekine T, Pistillo M, Crucian B, Bollard CM, Simpson RJ. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160–71.PubMedCrossRef Bigley AB, Rezvani K, Chew C, Sekine T, Pistillo M, Crucian B, Bollard CM, Simpson RJ. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun. 2014;39:160–71.PubMedCrossRef
61.
go back to reference Yang YC, Banuelos CA, Mawji NR, Wang J, Kato M, Haile S, McEwan IJ, Plymate S, Sadar MD. Targeting androgen receptor activation Function-1 with EPI to Overcome Resistance mechanisms in Castration-resistant prostate Cancer. Clin cancer Research: Official J Am Association Cancer Res. 2016;22(17):4466–77.CrossRef Yang YC, Banuelos CA, Mawji NR, Wang J, Kato M, Haile S, McEwan IJ, Plymate S, Sadar MD. Targeting androgen receptor activation Function-1 with EPI to Overcome Resistance mechanisms in Castration-resistant prostate Cancer. Clin cancer Research: Official J Am Association Cancer Res. 2016;22(17):4466–77.CrossRef
62.
go back to reference Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature. 2023;618(7965):607–15.PubMedCrossRef Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature. 2023;618(7965):607–15.PubMedCrossRef
63.
go back to reference Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150(4):780–91.PubMedPubMedCentralCrossRef Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150(4):780–91.PubMedPubMedCentralCrossRef
64.
go back to reference Søndergaard SR, Cozzi Lepri A, Ullum H, Wiis J, Hermann CK, Laursen SB, Qvist J, Gerstoft J, Skinhøj P, Pedersen BK. Adrenaline-induced mobilization of T cells in HIV-infected patients. Clin Exp Immunol. 2000;119(1):115–22.PubMedPubMedCentralCrossRef Søndergaard SR, Cozzi Lepri A, Ullum H, Wiis J, Hermann CK, Laursen SB, Qvist J, Gerstoft J, Skinhøj P, Pedersen BK. Adrenaline-induced mobilization of T cells in HIV-infected patients. Clin Exp Immunol. 2000;119(1):115–22.PubMedPubMedCentralCrossRef
65.
go back to reference Rodberg GM, Kradin RL. Epinephrine augments specific T-cell responses to antigen in C57BL/6 (H-2b) weak-responder mice by a CD8 + lymphocyte-dependent mechanism. Pathobiol J ImmunoPathol Mol Cell Biol. 1998;66(2):84–9.CrossRef Rodberg GM, Kradin RL. Epinephrine augments specific T-cell responses to antigen in C57BL/6 (H-2b) weak-responder mice by a CD8 + lymphocyte-dependent mechanism. Pathobiol J ImmunoPathol Mol Cell Biol. 1998;66(2):84–9.CrossRef
66.
go back to reference Zalli A, Bosch JA, Goodyear O, Riddell N, McGettrick HM, Moss P, Wallace GR. Targeting ß2 adrenergic receptors regulate human T cell function directly and indirectly. Brain Behav Immun. 2015;45:211–8.PubMedCrossRef Zalli A, Bosch JA, Goodyear O, Riddell N, McGettrick HM, Moss P, Wallace GR. Targeting ß2 adrenergic receptors regulate human T cell function directly and indirectly. Brain Behav Immun. 2015;45:211–8.PubMedCrossRef
67.
go back to reference Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549(7670):101–5.PubMedPubMedCentralCrossRef Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549(7670):101–5.PubMedPubMedCentralCrossRef
68.
69.
go back to reference Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Annals Oncology: Official J Eur Soc Med Oncol. 2016;27(3):409–16.CrossRef Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Annals Oncology: Official J Eur Soc Med Oncol. 2016;27(3):409–16.CrossRef
70.
go back to reference Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccines Immunotherapeutics. 2019;15(5):1111–22.CrossRef Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccines Immunotherapeutics. 2019;15(5):1111–22.CrossRef
71.
go back to reference Zhang Z, Cui F, Zhou M, Wu S, Zou Q, Gao B. Single-cell RNA sequencing analysis identifies key genes in Brain Metastasis from Lung Adenocarcinoma. Curr Gene Ther. 2021;21(4):338–48.PubMedCrossRef Zhang Z, Cui F, Zhou M, Wu S, Zou Q, Gao B. Single-cell RNA sequencing analysis identifies key genes in Brain Metastasis from Lung Adenocarcinoma. Curr Gene Ther. 2021;21(4):338–48.PubMedCrossRef
72.
go back to reference Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Translational Med. 2022;12(3):e694.CrossRef Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Translational Med. 2022;12(3):e694.CrossRef
73.
go back to reference Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–e643634.PubMedCrossRef Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–e643634.PubMedCrossRef
74.
go back to reference Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF. Chemokine expression in melanoma metastases associated with CD8 + T-cell recruitment. Cancer Res. 2009;69(7):3077–85.PubMedCrossRef Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, McKee M, Gajewski TF. Chemokine expression in melanoma metastases associated with CD8 + T-cell recruitment. Cancer Res. 2009;69(7):3077–85.PubMedCrossRef
75.
go back to reference Zumwalt TJ, Arnold M, Goel A, Boland CR. Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB + CD8 + T-cell infiltration. Oncotarget. 2015;6(5):2981–91.PubMedCrossRef Zumwalt TJ, Arnold M, Goel A, Boland CR. Active secretion of CXCL10 and CCL5 from colorectal cancer microenvironments associates with GranzymeB + CD8 + T-cell infiltration. Oncotarget. 2015;6(5):2981–91.PubMedCrossRef
77.
go back to reference Carlin JL, Grissom N, Ying Z, Gomez-Pinilla F, Reyes TM. Voluntary exercise blocks Western diet-induced gene expression of the chemokines CXCL10 and CCL2 in the prefrontal cortex. Brain Behav Immun. 2016;58:82–90.PubMedPubMedCentralCrossRef Carlin JL, Grissom N, Ying Z, Gomez-Pinilla F, Reyes TM. Voluntary exercise blocks Western diet-induced gene expression of the chemokines CXCL10 and CCL2 in the prefrontal cortex. Brain Behav Immun. 2016;58:82–90.PubMedPubMedCentralCrossRef
78.
go back to reference Melese ES, Franks E, Cederberg RA, Harbourne BT, Shi R, Wadsworth BJ, Collier JL, Halvorsen EC, Johnson F, Luu J, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11(1):2010905.PubMedCrossRef Melese ES, Franks E, Cederberg RA, Harbourne BT, Shi R, Wadsworth BJ, Collier JL, Halvorsen EC, Johnson F, Luu J, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11(1):2010905.PubMedCrossRef
79.
go back to reference Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol. 2001;2(2):102–7.PubMedCrossRef Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation. Nat Immunol. 2001;2(2):102–7.PubMedCrossRef
Metadata
Title
Exercise accelerates recruitment of CD8+ T cell to promotes anti-tumor immunity in lung cancer via epinephrine
Authors
Sai-Nan Miao
Meng-Qi Chai
Xiang-Yu Liu
Cheng-Yu Wei
Cun-Cun Zhang
Ning-Ning Sun
Qing-Ze Fei
Lin-Lin Peng
Huan Qiu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12224-7

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine