Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Lung Cancer | Primary Research

Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia

Authors: Kairu Xie, Hairong Xiong, Wen Xiao, Zhiyong Xiong, Wenjun Hu, Jiaxin Ye, Ning Xu, Jian Shi, Changfei Yuan, Zhixian Chen, Daojia Miao, Xiaoping Zhang, Hongmei Yang

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Cancer cachexia is a wasting disorder characterized by significant weight loss, and is attributed to skeletal muscle weakness. In the process of cancer development, microRNAs act as oncogenes or tumor suppressors. Moreover, they are implicated in muscle development and wasting. This study sought to explore the mechanisms and correlation between miR-29c and muscle wasting in lung cancer cachexia.

Methods

Data for expression analysis were retrieved from the Cancer Genome Atlas (TCGA) database. qRT-PCR analyses were performed to explore the expression levels of miR-29c and Leukemia Inhibitory Factor (LIF). Lewis lung carcinoma (LLC) cell line was used to establish a cachexia model to explore the functions of miR-29c and LIF in lung cancer cachexia. Furthermore, in vitro (in C2C12 myotubes) and in vivo (in LLC tumor-bearing mice) experiments were performed to explore the mechanisms of miR-29c and LIF in lung cachexia.

Results

Analysis of the lung cancer cachexia model showed that miR-29c was down-regulated, and its expression was negatively correlated with muscle catabolic activity. Overexpression of miR-29c mitigated the cachectic phenotype. Mechanistic studies showed that LIF was a direct target gene of miR-29c, and LIF was upregulated in vitro and in vivo. Analysis showed that LIF promoted muscle wasting through the JAK/STAT and MAP-kinase pathways.

Conclusions

The findings indicated that miR-29c was negatively correlated with the cachectic phenotype, and the miR-29c-LIF axis is a potential therapeutic target for cancer cachexia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–62.CrossRef Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754–62.CrossRef
2.
go back to reference Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.CrossRef Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.CrossRef
3.
go back to reference Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discovery. 2015;14(1):58–74.CrossRef Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discovery. 2015;14(1):58–74.CrossRef
4.
go back to reference Zhou XL, Wang JL, Lu J, Song YP, Kwak KS, Jiao QS, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43.CrossRef Zhou XL, Wang JL, Lu J, Song YP, Kwak KS, Jiao QS, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142(4):531–43.CrossRef
5.
go back to reference Rausch V, Sala V, Penna F, Porporato PE, Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis. 2021;10(1). Rausch V, Sala V, Penna F, Porporato PE, Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis. 2021;10(1).
6.
go back to reference Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66.CrossRef Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66.CrossRef
7.
go back to reference Chen R, Lei S, Jiang T, She YL, Shi HC. Regulation of skeletal muscle atrophy in cachexia by MicroRNAs and long non-coding RNAs. Front Cell Dev Biol. 2020;8. Chen R, Lei S, Jiang T, She YL, Shi HC. Regulation of skeletal muscle atrophy in cachexia by MicroRNAs and long non-coding RNAs. Front Cell Dev Biol. 2020;8.
8.
go back to reference Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100.CrossRef Kir S, White JP, Kleiner S, Kazak L, Cohen P, Baracos VE, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(7516):100.CrossRef
9.
go back to reference Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer. 2020;20(5):274–84.CrossRef Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer. 2020;20(5):274–84.CrossRef
10.
go back to reference Zhang GH, Jin BW, Li YP. C/EBP beta mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO J. 2011;30(20):4323–35.CrossRef Zhang GH, Jin BW, Li YP. C/EBP beta mediates tumour-induced ubiquitin ligase atrogin1/MAFbx upregulation and muscle wasting. EMBO J. 2011;30(20):4323–35.CrossRef
11.
go back to reference Doyle A, Zhang GH, Fattah EAA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 2011;25(1):99–110.CrossRef Doyle A, Zhang GH, Fattah EAA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J. 2011;25(1):99–110.CrossRef
12.
go back to reference Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90–9.CrossRef Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90–9.CrossRef
13.
go back to reference Dingemans AMC, de Vos-Geelen J, Langen R, Schols AMW. Phase II drugs that are currently in development for the treatment of cachexia. Expert Opin Investig Drugs. 2014;23(12):1655–69.CrossRef Dingemans AMC, de Vos-Geelen J, Langen R, Schols AMW. Phase II drugs that are currently in development for the treatment of cachexia. Expert Opin Investig Drugs. 2014;23(12):1655–69.CrossRef
14.
go back to reference Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRef Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRef
15.
go back to reference Yang SX, Sun ZQ, Zhou QB, Wang WW, Wang GX, Song JM, et al. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manage Res. 2018;10:2249–57.CrossRef Yang SX, Sun ZQ, Zhou QB, Wang WW, Wang GX, Song JM, et al. MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Manage Res. 2018;10:2249–57.CrossRef
16.
go back to reference Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, et al. Involvement of MicroRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem. 2014;289(32):21909–25.CrossRef Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, et al. Involvement of MicroRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem. 2014;289(32):21909–25.CrossRef
17.
go back to reference Kwon JJ, Factora TD, Dey S, Kota J. A systematic review of miR-29 in cancer. Mol Ther-Oncolytics. 2019;12:173–94.CrossRef Kwon JJ, Factora TD, Dey S, Kota J. A systematic review of miR-29 in cancer. Mol Ther-Oncolytics. 2019;12:173–94.CrossRef
18.
go back to reference Sun DM, Tang BF, Li ZX, Guo HB, Cheng JL, Song PP, et al. MiR-29c reduces the cisplatin resistance of non-small cell lung cancer cells by negatively regulating the PI3K/Akt pathway. Sci Rep. 2018;8. Sun DM, Tang BF, Li ZX, Guo HB, Cheng JL, Song PP, et al. MiR-29c reduces the cisplatin resistance of non-small cell lung cancer cells by negatively regulating the PI3K/Akt pathway. Sci Rep. 2018;8.
19.
go back to reference Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. BBA-Mol Cell Res. 2015;1853(10):2392–403. Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. BBA-Mol Cell Res. 2015;1853(10):2392–403.
20.
go back to reference Wang YX, Liu CZ, Luo M, Zhang ZY, Gong JN, Li JJ, et al. Chemotherapy-induced miRNA-29c/Catenin-delta signaling suppresses metastasis in gastric cancer. Can Res. 2015;75(7):1332–44.CrossRef Wang YX, Liu CZ, Luo M, Zhang ZY, Gong JN, Li JJ, et al. Chemotherapy-induced miRNA-29c/Catenin-delta signaling suppresses metastasis in gastric cancer. Can Res. 2015;75(7):1332–44.CrossRef
21.
go back to reference Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-kappa B-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14(5):369–81.CrossRef Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-kappa B-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14(5):369–81.CrossRef
22.
go back to reference Silva WJ, Graca FA, Cruz A, Silvestre JG, Labeit S, Miyabara EH, et al. miR-29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy-related genes. Acta Physiol. 2019;226(4). Silva WJ, Graca FA, Cruz A, Silvestre JG, Labeit S, Miyabara EH, et al. miR-29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy-related genes. Acta Physiol. 2019;226(4).
23.
go back to reference Puppa MJ, Gao S, Narsale AA, Carson JA. Skeletal muscle glycoprotein 130’s role in Lewis lung carcinoma-induced cachexia. FASEB J. 2014;28(2):998–1009.CrossRef Puppa MJ, Gao S, Narsale AA, Carson JA. Skeletal muscle glycoprotein 130’s role in Lewis lung carcinoma-induced cachexia. FASEB J. 2014;28(2):998–1009.CrossRef
24.
go back to reference Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z, et al. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBP beta-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol. 2016;311(1):C101–15.CrossRef Sun R, Zhang S, Hu W, Lu X, Lou N, Yang Z, et al. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBP beta-regulated atrogin1 expression in cancer cachexia. Am J Physiol Cell Physiol. 2016;311(1):C101–15.CrossRef
25.
go back to reference Hu WJ, Ru ZY, Zhou YL, Xiao W, Sun RL, Zhang ST, et al. Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. BBA-Mol Cell Biol L. 2019;1864(8):1091–102. Hu WJ, Ru ZY, Zhou YL, Xiao W, Sun RL, Zhang ST, et al. Lung cancer-derived extracellular vesicles induced myotube atrophy and adipocyte lipolysis via the extracellular IL-6-mediated STAT3 pathway. BBA-Mol Cell Biol L. 2019;1864(8):1091–102.
26.
go back to reference Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol. 2019;234(11):19280–97.CrossRef Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol. 2019;234(11):19280–97.CrossRef
27.
go back to reference Sun CC, Li SJ, Li G, Hua RX, Zhou XH, Li DJ. Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther-Nucleic Acids. 2016;5. Sun CC, Li SJ, Li G, Hua RX, Zhou XH, Li DJ. Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther-Nucleic Acids. 2016;5.
28.
go back to reference Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci. 2018;75(19):3539–51.CrossRef Bica-Pop C, Cojocneanu-Petric R, Magdo L, Raduly L, Gulei D, Berindan-Neagoe I. Overview upon miR-21 in lung cancer: focus on NSCLC. Cell Mol Life Sci. 2018;75(19):3539–51.CrossRef
29.
go back to reference Gao W, Xu J, Liu L, Shen H, Zeng H, Shu Y. A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother. 2012;66(1):21–8.CrossRef Gao W, Xu J, Liu L, Shen H, Zeng H, Shu Y. A systematic-analysis of predicted miR-21 targets identifies a signature for lung cancer. Biomed Pharmacother. 2012;66(1):21–8.CrossRef
30.
go back to reference Tang JM, Li X, Cheng TL, Wu J. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thoracic Cancer. 2021;12(17):2307–13.CrossRef Tang JM, Li X, Cheng TL, Wu J. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thoracic Cancer. 2021;12(17):2307–13.CrossRef
31.
go back to reference Freire PP, Fernandez GJ, de Moraes D, Cury SS, Dal Pai-Silva M, Dos Reis PP, et al. The expression landscape of cachexia-inducing factors in human cancers. J Cachexia Sarcopenia Muscle. 2020;11(4):947–61.CrossRef Freire PP, Fernandez GJ, de Moraes D, Cury SS, Dal Pai-Silva M, Dos Reis PP, et al. The expression landscape of cachexia-inducing factors in human cancers. J Cachexia Sarcopenia Muscle. 2020;11(4):947–61.CrossRef
32.
go back to reference Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015;26(5):533–44.CrossRef Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015;26(5):533–44.CrossRef
33.
go back to reference Dong HF, Lei JP, Ding L, Wen YQ, Ju HX, Zhang XJ. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.CrossRef Dong HF, Lei JP, Ding L, Wen YQ, Ju HX, Zhang XJ. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113(8):6207–33.CrossRef
34.
go back to reference Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122(1):6–7.CrossRef Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005;122(1):6–7.CrossRef
35.
go back to reference Meng FY, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.CrossRef Meng FY, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.CrossRef
36.
go back to reference Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801.CrossRef Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801.CrossRef
37.
go back to reference Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007;104(40):15805–10.CrossRef Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007;104(40):15805–10.CrossRef
38.
go back to reference Mahati S, Xiao L, Yang Y, Mao R, Bao YX. miR-29a suppresses growth and migration of hepatocellular carcinoma by regulating CLDN1. Biochem Biophys Res Commun. 2017;486(3):732–7.CrossRef Mahati S, Xiao L, Yang Y, Mao R, Bao YX. miR-29a suppresses growth and migration of hepatocellular carcinoma by regulating CLDN1. Biochem Biophys Res Commun. 2017;486(3):732–7.CrossRef
39.
go back to reference Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, et al. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 1987;6(13):3995–4002.CrossRef Gearing DP, Gough NM, King JA, Hilton DJ, Nicola NA, Simpson RJ, et al. Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 1987;6(13):3995–4002.CrossRef
40.
go back to reference Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther. 2021;221:107754.CrossRef Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther. 2021;221:107754.CrossRef
41.
go back to reference Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C, et al. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun. 2014;5. Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C, et al. LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun. 2014;5.
42.
go back to reference Austin L, Burgess AW. Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines. J Neurol Sci. 1991;101(2):193–7.CrossRef Austin L, Burgess AW. Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines. J Neurol Sci. 1991;101(2):193–7.CrossRef
43.
go back to reference Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, et al. Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. BBA-Mol Cell Res. 2005;1743(3):187–97. Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, et al. Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. BBA-Mol Cell Res. 2005;1743(3):187–97.
44.
go back to reference Barnard W, Bower J, Brown MA, Murphy M, Austin L. Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle expresses lif mRNA. J Neurol Sci. 1994;123(1–2):108–13.CrossRef Barnard W, Bower J, Brown MA, Murphy M, Austin L. Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle expresses lif mRNA. J Neurol Sci. 1994;123(1–2):108–13.CrossRef
45.
go back to reference Donzelli S, Farneti A, Marucci L, Ganci F, Sacconi A, Strano S, et al. Non-coding RNAs as putative biomarkers of cancer-associated cachexia. Front Cell Dev Biol. 2020;8. Donzelli S, Farneti A, Marucci L, Ganci F, Sacconi A, Strano S, et al. Non-coding RNAs as putative biomarkers of cancer-associated cachexia. Front Cell Dev Biol. 2020;8.
46.
go back to reference He WA, Calore F, Londhe P, Canella A, Guttridge DC, Croce CM. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 2014;111(12):4525–9.CrossRef He WA, Calore F, Londhe P, Canella A, Guttridge DC, Croce CM. Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 2014;111(12):4525–9.CrossRef
47.
go back to reference Powrozek T, Mlak R, Brzozowska A, Mazurek M, Golebiowski P, Malecka-Massalska T. miRNA-130a significantly improves accuracy of SGA nutritional assessment tool in prediction of malnutrition and cachexia in radiotherapy-treated head and neck cancer patients. Cancers. 2018;10(9). Powrozek T, Mlak R, Brzozowska A, Mazurek M, Golebiowski P, Malecka-Massalska T. miRNA-130a significantly improves accuracy of SGA nutritional assessment tool in prediction of malnutrition and cachexia in radiotherapy-treated head and neck cancer patients. Cancers. 2018;10(9).
Metadata
Title
Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia
Authors
Kairu Xie
Hairong Xiong
Wen Xiao
Zhiyong Xiong
Wenjun Hu
Jiaxin Ye
Ning Xu
Jian Shi
Changfei Yuan
Zhixian Chen
Daojia Miao
Xiaoping Zhang
Hongmei Yang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02332-w

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine