Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2023

Open Access 01-12-2023 | Lung Cancer | Research

A study on fractional tumor-immune interaction model related to lung cancer via generalized Laguerre polynomials

Authors: Hossein Hassani, Zakieh Avazzadeh, Praveen Agarwal, Samrad Mehrabi, M. J. Ebadi, Mohammad Shafi Dahaghin, Eskandar Naraghirad

Published in: BMC Medical Research Methodology | Issue 1/2023

Login to get access

Abstract

Background

Cancer, a complex and deadly health concern today, is characterized by forming potentially malignant tumors or cancer cells. The dynamic interaction between these cells and their environment is crucial to the disease. Mathematical models can enhance our understanding of these interactions, helping us predict disease progression and treatment strategies.

Methods

In this study, we develop a fractional tumor-immune interaction model specifically for lung cancer (FTIIM-LC). We present some definitions and significant results related to the Caputo operator. We employ the generalized Laguerre polynomials (GLPs) method to find the optimal solution for the FTIIM-LC model. We then conduct a numerical simulation and compare the results of our method with other techniques and real-world data.

Results

We propose a FTIIM-LC model in this paper. The approximate solution for the proposed model is derived using a series of expansions in a new set of polynomials, the GLPs. To streamline the process, we integrate Lagrange multipliers, GLPs, and operational matrices of fractional and ordinary derivatives. We conduct a numerical simulation to study the effects of varying fractional orders and achieve the expected theoretical results.

Conclusion

The findings of this study demonstrate that the optimization methods used can effectively predict and analyze complex phenomena. This innovative approach can also be applied to other nonlinear differential equations, such as the fractional Klein–Gordon equation, fractional diffusion-wave equation, breast cancer model, and fractional optimal control problems.
Literature
2.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer. J Clin. 2018;68(6):394–424. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer. J Clin. 2018;68(6):394–424.
4.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.PubMedCrossRef
7.
go back to reference Rami-Porta R, Bolejack V, Giroux DJ, Chansky K, Crowley J, Asamura H, et al., The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9(11):1618–1624. Rami-Porta R, Bolejack V, Giroux DJ, Chansky K, Crowley J, Asamura H, et al., The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9(11):1618–1624.
15.
go back to reference Özköse F, Yılmaz S, Yavuz M, Öztürk I, Şenel MT, et al. A fractional modeling of tumor-immune system interaction related to lung cancer with real data. Eur Phys J Plus. 2022;137:40.CrossRef Özköse F, Yılmaz S, Yavuz M, Öztürk I, Şenel MT, et al. A fractional modeling of tumor-immune system interaction related to lung cancer with real data. Eur Phys J Plus. 2022;137:40.CrossRef
16.
go back to reference Hu X, Jang SR-J. Dynamics of tumor-CD4+-cytokines-host cells interactions with treatments. Appl Math Comput. 2018;321:700–20. Hu X, Jang SR-J. Dynamics of tumor-CD4+-cytokines-host cells interactions with treatments. Appl Math Comput. 2018;321:700–20.
20.
go back to reference Kumar S, Kumar A, Samet B, Gómez-Aguilar JF, Osman MS. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos, Solitons Fractals. 2020;141:110321.CrossRef Kumar S, Kumar A, Samet B, Gómez-Aguilar JF, Osman MS. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos, Solitons Fractals. 2020;141:110321.CrossRef
21.
go back to reference Yu J-L, Jang SR-J. A mathematical model of tumor-immune interactions with an immune checkpoint inhibitor. Appl Math Comput. 2019;362:124523. Yu J-L, Jang SR-J. A mathematical model of tumor-immune interactions with an immune checkpoint inhibitor. Appl Math Comput. 2019;362:124523.
22.
go back to reference Dai F, Liu B. Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy. J Franklin Inst. 2021;358(1):448–73.CrossRef Dai F, Liu B. Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy. J Franklin Inst. 2021;358(1):448–73.CrossRef
23.
go back to reference Ogunmiloro OM. Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model. Chaos Solitons Fractals. 2021;146:110851.CrossRef Ogunmiloro OM. Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model. Chaos Solitons Fractals. 2021;146:110851.CrossRef
25.
go back to reference Aguilar JFG, García JR, Alvarado JB, Guía M. Mathematical modelling of the mass-spring-damper system- A fractional calculus approach. Acta Universitaria. 2012;22(5):5–11.CrossRef Aguilar JFG, García JR, Alvarado JB, Guía M. Mathematical modelling of the mass-spring-damper system- A fractional calculus approach. Acta Universitaria. 2012;22(5):5–11.CrossRef
26.
go back to reference Diethelm K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynam. 2013;71:613–9.CrossRef Diethelm K. A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynam. 2013;71:613–9.CrossRef
27.
go back to reference Rihan FA, Arafa AA, Rakkiyappan R, Rajivganthi C, Xu Y. Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-α treatment. Alex Eng J. 2021;60:4761–74.CrossRef Rihan FA, Arafa AA, Rakkiyappan R, Rajivganthi C, Xu Y. Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-α treatment. Alex Eng J. 2021;60:4761–74.CrossRef
28.
go back to reference Hassani H, Tenreiro Machado JA, Avazzadeh Z. An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dynam. 2019;97:2041–54.CrossRef Hassani H, Tenreiro Machado JA, Avazzadeh Z. An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dynam. 2019;97:2041–54.CrossRef
29.
go back to reference Hassani H, Avazzadeh Z, TenreiroMachodo JA. Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng Comput. 2020;36:867–78.CrossRef Hassani H, Avazzadeh Z, TenreiroMachodo JA. Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng Comput. 2020;36:867–78.CrossRef
30.
go back to reference Veeresha P, Baskonus HM, Prakasha DG, Gao W, Yel G. Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena. Chaos, Solitons Fractals. 2020;133:109661.CrossRef Veeresha P, Baskonus HM, Prakasha DG, Gao W, Yel G. Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena. Chaos, Solitons Fractals. 2020;133:109661.CrossRef
31.
go back to reference Khan AA, Amin R, Ullah S, Sumelka W, Altanji M. Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission. Alex Eng J. 2022;61(7):5083–95.CrossRef Khan AA, Amin R, Ullah S, Sumelka W, Altanji M. Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission. Alex Eng J. 2022;61(7):5083–95.CrossRef
32.
go back to reference Zafar ZUA, Ali N, Baleanu D. Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats. Chaos, Solitons Fractals. 2021;151:111261.CrossRef Zafar ZUA, Ali N, Baleanu D. Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats. Chaos, Solitons Fractals. 2021;151:111261.CrossRef
33.
go back to reference Cui X, Xue D, Li T. Fractional-order delayed Ross-Macdonald model for malaria transmission. Nonlinear Dynam. 2022;107:3155–73.CrossRef Cui X, Xue D, Li T. Fractional-order delayed Ross-Macdonald model for malaria transmission. Nonlinear Dynam. 2022;107:3155–73.CrossRef
34.
go back to reference Abdullah FA, Liu F, Burrage P, Burrage K, Li T. Novel analytical and numerical techniques for fractional temporal SEIR measles model. Numerical Algorithms. 2018;79:19–40.CrossRef Abdullah FA, Liu F, Burrage P, Burrage K, Li T. Novel analytical and numerical techniques for fractional temporal SEIR measles model. Numerical Algorithms. 2018;79:19–40.CrossRef
35.
go back to reference Hassani H, Mehrabi S, Naraghirad E, Naghmachi M, Yüzbaşi S. An Optimization Method Based on the Generalized Polynomials for a Model of HIV Infection of CD4 + T Cells. Iran J Sci Technol A. 2020;44:407–16.CrossRef Hassani H, Mehrabi S, Naraghirad E, Naghmachi M, Yüzbaşi S. An Optimization Method Based on the Generalized Polynomials for a Model of HIV Infection of CD4 + T Cells. Iran J Sci Technol A. 2020;44:407–16.CrossRef
36.
go back to reference Ghita M, Copot D, Ionescu CM. Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup. J Adv Res. 2021;32:61–71.PubMedPubMedCentralCrossRef Ghita M, Copot D, Ionescu CM. Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup. J Adv Res. 2021;32:61–71.PubMedPubMedCentralCrossRef
37.
go back to reference Ullah MS, Higazy M, ArifulKabir KM. Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach. Chaos, Solitons Fractals. 2022;162:112431.CrossRef Ullah MS, Higazy M, ArifulKabir KM. Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach. Chaos, Solitons Fractals. 2022;162:112431.CrossRef
38.
go back to reference Ullah MS, Higazy M, ArifulKabir KM. Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach. Chaos, Solitons Fractals. 2022;155:111636.PubMedCrossRef Ullah MS, Higazy M, ArifulKabir KM. Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach. Chaos, Solitons Fractals. 2022;155:111636.PubMedCrossRef
41.
go back to reference Peijiang L, Din A, Rahat Z. Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 2022;39:105757.CrossRef Peijiang L, Din A, Rahat Z. Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels. Results Phys. 2022;39:105757.CrossRef
44.
go back to reference Uçar E, Ozdemir N. New fractional cancer mathematical model via IL-10 cytokine and anti-PD-L1 inhibitor. Fractal Fract. 2023;7(2):151.CrossRef Uçar E, Ozdemir N. New fractional cancer mathematical model via IL-10 cytokine and anti-PD-L1 inhibitor. Fractal Fract. 2023;7(2):151.CrossRef
47.
go back to reference Ucar S. Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey. J Comput Appl Math. 2023;419:114692.CrossRef Ucar S. Analysis of hepatitis B disease with fractal–fractional Caputo derivative using real data from Turkey. J Comput Appl Math. 2023;419:114692.CrossRef
52.
go back to reference Zafar ZUA, Hussain MT, Inc M, Baleanu D, Almohsen B, Oke AS, Javeed Sh. Fractional order dynamics of human papillomavirus. Results Phys. 2022;34:105281.CrossRef Zafar ZUA, Hussain MT, Inc M, Baleanu D, Almohsen B, Oke AS, Javeed Sh. Fractional order dynamics of human papillomavirus. Results Phys. 2022;34:105281.CrossRef
53.
go back to reference Zafar ZUA, Zaib S, Hussain MT, Tunc C, Javeed Sh. Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos, Solitons Fractals. 2022;160:112202.CrossRef Zafar ZUA, Zaib S, Hussain MT, Tunc C, Javeed Sh. Analysis and numerical simulation of tuberculosis model using different fractional derivatives. Chaos, Solitons Fractals. 2022;160:112202.CrossRef
55.
go back to reference Hasan A, Akgul A, Farman M, Chaudhry F, Sultan M, Sen MDI. Epidemiological analysis of symmetry in transmission of Ebola virus with power law kernel. Symmetry. 2023;15(3):665.CrossRef Hasan A, Akgul A, Farman M, Chaudhry F, Sultan M, Sen MDI. Epidemiological analysis of symmetry in transmission of Ebola virus with power law kernel. Symmetry. 2023;15(3):665.CrossRef
56.
go back to reference Farman M, Shehzad A, Akgül A, Baleanu D, Sen MDI. Modelling and Analysis of a Measles Epidemic Model with the Constant Proportional Caputo Operator. Symmetry. 2023;15(2):533.CrossRef Farman M, Shehzad A, Akgül A, Baleanu D, Sen MDI. Modelling and Analysis of a Measles Epidemic Model with the Constant Proportional Caputo Operator. Symmetry. 2023;15(2):533.CrossRef
57.
go back to reference Farman M, Besbes H, Nisar KS, Omri M. Analysis and Dynamical Transmission of Covid-19 Model using Caputo-Fabrizio Derivative. Alex Eng J. 2023;66(3):597–606.CrossRef Farman M, Besbes H, Nisar KS, Omri M. Analysis and Dynamical Transmission of Covid-19 Model using Caputo-Fabrizio Derivative. Alex Eng J. 2023;66(3):597–606.CrossRef
58.
go back to reference Tang TQ, Rooman M, Shah Z, Khan S, Vrinceanu N, Alshehri A, Racheriu M. Numerical study of magnetized Powell-Eyring hybrid nanomaterial flow with variable heat transfer in the presence of artificial bacteria: Applications for tumor removal and cancer cell destruction. Front Mater. 2023;10:1144854. https://doi.org/10.3389/fmats.2023.1144854.CrossRef Tang TQ, Rooman M, Shah Z, Khan S, Vrinceanu N, Alshehri A, Racheriu M. Numerical study of magnetized Powell-Eyring hybrid nanomaterial flow with variable heat transfer in the presence of artificial bacteria: Applications for tumor removal and cancer cell destruction. Front Mater. 2023;10:1144854. https://​doi.​org/​10.​3389/​fmats.​2023.​1144854.CrossRef
61.
go back to reference Xu C, Zhang W, Aouiti C, Liu Z, Yao L. Bifurcation insight for a fractional-order stage-structured predator–prey system incorporating mixed time delays. Math Methods Applied Sci. 2023;46:9103–18.CrossRef Xu C, Zhang W, Aouiti C, Liu Z, Yao L. Bifurcation insight for a fractional-order stage-structured predator–prey system incorporating mixed time delays. Math Methods Applied Sci. 2023;46:9103–18.CrossRef
62.
go back to reference Xu C, Mu D, Liu Z, Pang Y, Liao M, Aouiti Ch. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun Nonlinear Sci Numer Simul. 2023;118:107043.CrossRef Xu C, Mu D, Liu Z, Pang Y, Liao M, Aouiti Ch. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun Nonlinear Sci Numer Simul. 2023;118:107043.CrossRef
63.
go back to reference Xu C, Liu Z, Li P, Yan J, Yao L. bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Process Lett. 2022;19:1–27.CrossRef Xu C, Liu Z, Li P, Yan J, Yao L. bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks. Neural Process Lett. 2022;19:1–27.CrossRef
64.
go back to reference Xu C, Liao M, Li P, Guo Y, Liu Z. Bifurcation Properties for Fractional Order Delayed BAM Neural Networks. Cogn Comput. 2021;13:322–56.CrossRef Xu C, Liao M, Li P, Guo Y, Liu Z. Bifurcation Properties for Fractional Order Delayed BAM Neural Networks. Cogn Comput. 2021;13:322–56.CrossRef
65.
go back to reference Ahmad Sh, Ullah A, Akgül A, Baleanu D. Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel. Results Phys. 2020;19:103559.CrossRef Ahmad Sh, Ullah A, Akgül A, Baleanu D. Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel. Results Phys. 2020;19:103559.CrossRef
66.
go back to reference Ahmad Sh, Ullah A, Abdeljawad T, Akgül A, Mlaiki N. Analysis of fractal-fractional model of tumor-immune interaction. Results Phys. 2021;25:104178.CrossRef Ahmad Sh, Ullah A, Abdeljawad T, Akgül A, Mlaiki N. Analysis of fractal-fractional model of tumor-immune interaction. Results Phys. 2021;25:104178.CrossRef
69.
go back to reference Rawani MK, Verma AK, Cattani C. A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. Commun Nonlinear Sci Numer Simul. 2023;118.CrossRef Rawani MK, Verma AK, Cattani C. A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. Commun Nonlinear Sci Numer Simul. 2023;118.CrossRef
71.
go back to reference Lorenzo CF, Hartley TT. Initialized fractional calculus. Int J Appl Math. 2000;3(3):249–65. Lorenzo CF, Hartley TT. Initialized fractional calculus. Int J Appl Math. 2000;3(3):249–65.
73.
go back to reference Aizenshtadt VS, Krylov VI, Metel’skii AS. Tables of Laguerre Polynomials and Functions. Oxford-New York: Mathematical Tables Series. Pergamon Press; 1966. Aizenshtadt VS, Krylov VI, Metel’skii AS. Tables of Laguerre Polynomials and Functions. Oxford-New York: Mathematical Tables Series. Pergamon Press; 1966.
75.
go back to reference Avazzadeh Z, Hassani H, Agarwal P, Mehrabi S, EbadiMJ and Sh Dahaghin M. An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials. Soft Computing. 2023:1–13. Avazzadeh Z, Hassani H, Agarwal P, Mehrabi S, EbadiMJ and Sh Dahaghin M. An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials. Soft Computing. 2023:1–13.
76.
go back to reference Fan K, Zhang Y, Gao S, Chen S. A delayed vaccinated epidemic model with nonlinear incidence rate and Levy jumps. Phys A. 2020;544:12379.CrossRef Fan K, Zhang Y, Gao S, Chen S. A delayed vaccinated epidemic model with nonlinear incidence rate and Levy jumps. Phys A. 2020;544:12379.CrossRef
79.
go back to reference Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel). 2021;13(8):1946.PubMedCrossRef Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel). 2021;13(8):1946.PubMedCrossRef
80.
go back to reference Zheng X, Weigert A, Reu S, Guenther S, Mansouri S, Bassaly B, et al. Spatial density and distribution of tumor-associated macrophages predict survival in non-small cell lung carcinoma. Cancer Res. 2020;80(20):4414–25.PubMedCrossRef Zheng X, Weigert A, Reu S, Guenther S, Mansouri S, Bassaly B, et al. Spatial density and distribution of tumor-associated macrophages predict survival in non-small cell lung carcinoma. Cancer Res. 2020;80(20):4414–25.PubMedCrossRef
82.
go back to reference Xu F, Wei Y, Tang Z, Liu B, Dong J. Tumor-associated macrophages in lung cancer: Friend or foe? Mol Med Rep. 2020;22(5):4107–15.PubMedPubMedCentral Xu F, Wei Y, Tang Z, Liu B, Dong J. Tumor-associated macrophages in lung cancer: Friend or foe? Mol Med Rep. 2020;22(5):4107–15.PubMedPubMedCentral
Metadata
Title
A study on fractional tumor-immune interaction model related to lung cancer via generalized Laguerre polynomials
Authors
Hossein Hassani
Zakieh Avazzadeh
Praveen Agarwal
Samrad Mehrabi
M. J. Ebadi
Mohammad Shafi Dahaghin
Eskandar Naraghirad
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2023
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-023-02006-3

Other articles of this Issue 1/2023

BMC Medical Research Methodology 1/2023 Go to the issue