Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: an in vitro and in vivo study

Authors: Xuechen Yu, Yuanzhen Zhang, Huijun Chen

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

The facts that LPA is present at high concentration in ovarian cancer patients’ ascites and it may serve as a stimulator to cell migration, implicate the role of LPA in the ovarian cancer metastasis. Since LPA mediates various biological functions through its interaction with LPA receptors, we aim to investigate the correlation between the expression of LPA receptors and the metastasis of ovarian cancer.

Methods

To test whether the LPA responsiveness correlated with the metastatic capability of ovarian cancer cells, we performed LPA induced invasion assay and peritoneal metastatic colonization assay with a panel of established human ovarian cancer cell lines. The expression of LPAR1-3 in different ovarian cancer lines was examined by qRT-PCR. We also tested the effects of LPAR1 inhibition or overexpression on ovarian cancer cell's invasiveness. To confirm our laboratory results, we detected LPARs expression in specimens from 52 ovarian cancer patients by qRT-PCR and immunohistochemistry.

Results

Thirteen ovarian cancer cells were enrolled in the invasion assay. Ovarian cancer cell lines which responded well to LPA-induced invasion, also displayed good capability for metastatic colonization. On the contrary, cell lines with poor LPA responsiveness showed inferior metastatic potential in peritoneal colonization assay. High expression level of LPAR1 was detected in all of the metastatic ovarian cancer cell lines. T-test showed that LPAR1, not LPAR2 or LPAR3, expression was significantly higher in the metastatic cell lines than in the non-metastatic cell lines (P = 0.003). Furthermore, silencing LPAR1 alone could significantly reduce LPA-induced invasion (P < 0.001). Finally, we analyzed the correlation between the LPARs expression and clinicopathological features of the clinical cases. It indicated that LPAR1 expression rate increased significantly along with the more advanced stages (stage I: 16.67 %; II 50.00 %; III: 75.00 %; and IV: 100.00 %; P = 0.003). Besides that, LPAR1 expression was detected in all the 13 cases with abdominal metastasis more than 2 cm, 10 cases with retroperitoneal lymph node metastasis and 6 cases with hepatic metastasis. Moreover, the expression rate of LPAR2 significantly increased in ovarian cancer than in normal specimens (P = 0.039). LPAR3 expression showed the same trend as LPAR2, though the difference is not statistically significant (P = 0.275). Besides that LPAR2 and LPAR3 expression increased along with poorer differentiation (P = 0.002, P = 0.034, respectively).

Conclusions

Metastatic capability of ovarian cancer cells correlated well with their responsiveness to LPA for cell invasion. LPAR1 acts as the main mediator responsible for LPA-stimulated ovarian cancer cell invasion. LPAR2 and LPAR3 might play an role in carcinogenesis of ovarian cancer.
Literature
2.
go back to reference Fang X, Yu S, LaPushin R, Lu Y, Furui T, Penn LZ, et al. Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem J. 2000;352(Pt 1):135–43.CrossRefPubMedPubMedCentral Fang X, Yu S, LaPushin R, Lu Y, Furui T, Penn LZ, et al. Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem J. 2000;352(Pt 1):135–43.CrossRefPubMedPubMedCentral
3.
go back to reference Imamura F, Horai T, Mukai M, Shinkai K, Sawada M, Akedo H. Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem Biophys Res Commun. 1993;193:497–503. doi:10.1006/bbrc.1993.1651.CrossRefPubMed Imamura F, Horai T, Mukai M, Shinkai K, Sawada M, Akedo H. Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem Biophys Res Commun. 1993;193:497–503. doi:10.​1006/​bbrc.​1993.​1651.CrossRefPubMed
4.
go back to reference Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9:437–42.CrossRefPubMed Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, et al. Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol. 1998;9:437–42.CrossRefPubMed
5.
go back to reference Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Jama. 1998;280:719–23.CrossRefPubMed Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. Jama. 1998;280:719–23.CrossRefPubMed
6.
go back to reference Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin Cancer Res. 2000;6:2482–91.PubMed Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB. Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin Cancer Res. 2000;6:2482–91.PubMed
7.
go back to reference Shen Z, Belinson J, Morton RE, Xu Y, Xu Y. Phorbol 12-myristate 13-acetate stimulates lysophosphatidic acid secretion from ovarian and cervical cancer cells but not from breast or leukemia cells. Gynecol Oncol. 1998;71:364–8. doi:10.1006/gyno.1998.5193.CrossRefPubMed Shen Z, Belinson J, Morton RE, Xu Y, Xu Y. Phorbol 12-myristate 13-acetate stimulates lysophosphatidic acid secretion from ovarian and cervical cancer cells but not from breast or leukemia cells. Gynecol Oncol. 1998;71:364–8. doi:10.​1006/​gyno.​1998.​5193.CrossRefPubMed
8.
go back to reference Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, et al. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 2006;66:3006–14. doi:10.1158/0008-5472.can-05-1292.CrossRefPubMed Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, et al. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 2006;66:3006–14. doi:10.​1158/​0008-5472.​can-05-1292.CrossRefPubMed
11.
go back to reference Fishman DA, Liu Y, Ellerbroek SM, Stack MS. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 2001;61:3194–9.PubMed Fishman DA, Liu Y, Ellerbroek SM, Stack MS. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res. 2001;61:3194–9.PubMed
12.
go back to reference Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S. Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem. 2005;280:10564–71. doi:10.1074/jbc.M412152200.CrossRefPubMed Li H, Ye X, Mahanivong C, Bian D, Chun J, Huang S. Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J Biol Chem. 2005;280:10564–71. doi:10.​1074/​jbc.​M412152200.CrossRefPubMed
13.
14.
go back to reference Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001;93:762–8.CrossRefPubMed Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001;93:762–8.CrossRefPubMed
17.
go back to reference Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, et al. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274:27776–85.CrossRefPubMed Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, et al. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274:27776–85.CrossRefPubMed
18.
go back to reference Im DS, Heise CE, Harding MA, George SR, O’Dowd BF, Theodorescu D, et al. Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol. 2000;57:753–9.PubMed Im DS, Heise CE, Harding MA, George SR, O’Dowd BF, Theodorescu D, et al. Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Mol Pharmacol. 2000;57:753–9.PubMed
19.
go back to reference Tsujino M, Fujii M, Okabe K, Mori T, Fukushima N, Tsujiuchi T. Differential expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in human colon cancer cells. Virchows Arch. 2010;457:669–76. doi:10.1007/s00428-010-0960-2.CrossRefPubMed Tsujino M, Fujii M, Okabe K, Mori T, Fukushima N, Tsujiuchi T. Differential expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in human colon cancer cells. Virchows Arch. 2010;457:669–76. doi:10.​1007/​s00428-010-0960-2.CrossRefPubMed
21.
22.
go back to reference Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A, et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res. 2002;62:6717–23.PubMed Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A, et al. Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res. 2002;62:6717–23.PubMed
23.
go back to reference Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90:447–54.CrossRefPubMed Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90:447–54.CrossRefPubMed
25.
go back to reference Park SY, Jeong KJ, Panupinthu N, Yu S, Lee J, Han JW, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011;30:1351–9. doi:10.1038/onc.2010.517.CrossRefPubMed Park SY, Jeong KJ, Panupinthu N, Yu S, Lee J, Han JW, et al. Lysophosphatidic acid augments human hepatocellular carcinoma cell invasion through LPA1 receptor and MMP-9 expression. Oncogene. 2011;30:1351–9. doi:10.​1038/​onc.​2010.​517.CrossRefPubMed
26.
go back to reference Komachi M, Tomura H, Malchinkhuu E, Tobo M, Mogi C, Yamada T, et al. LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009;30(3):457-65. doi: 10.1093/carcin/bgp011. Komachi M, Tomura H, Malchinkhuu E, Tobo M, Mogi C, Yamada T, et al. LPA1 receptors mediate stimulation, whereas LPA2 receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis. 2009;30(3):457-65. doi: 10.​1093/​carcin/​bgp011.
Metadata
Title
LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: an in vitro and in vivo study
Authors
Xuechen Yu
Yuanzhen Zhang
Huijun Chen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2865-1

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine