Skip to main content
Top
Published in: BMC Neurology 1/2016

Open Access 01-12-2016 | Case report

Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review

Authors: Yisen Zhang, Linkai Jing, Ying Zhang, Jian Liu, Xinjian Yang

Published in: BMC Neurology | Issue 1/2016

Login to get access

Abstract

Background

Few previous hemodynamic studies demonstrated the detailed features of rupture point of intracranial aneurysms. The hemodynamic simulation for the case that ruptured during angiography was even rare. In the present study, we studied the hemodynamic characteristics of a posterior communicating artery segment aneurysm that ruptured during angiography and detailed the hemodynamic features at the rupture point.

Case presentation

One 64-years-patient was 60–69 years old and suffered a subarachnoid hemorrhage within 24 h. Standard digital subtraction angiography and three-dimensional (3D) rotational angiography were performed and an 8 mm left posterior communicating artery segment aneurysm was found. The patient had a seizure immediately following 3D angiography for about 40 s and the immediate follow-up angiography showed contrast extravasation from the tip of identified aneurysms. The consequent vital sign of the patient became unstable. Urgent embolization under general anesthesia was planned, but the relatives refused interventional operation considering the high risk of procedure and poor condition of the patient. The computational fluid dynamic (CFD) method was used to evaluate the hemodynamic characteristics at rupture point, and the results showed that the rupture point was associated with markedly low wall shear stress and high oscillatory shear index without flow impingement.

Conclusions

We present a rare case of which the rupture site was identified during angiography. The hemodynamic simulations revealed that the rupture point was associated with markedly low WSS and high OSI without flow impingement. The result may be unique to this particular aneurysm; however, our findings provide insight into the hemodynamics of rupture point.
Literature
1.
go back to reference Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, Bleise C, Lylyk P, Putman CM. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg. 2015;7:530–6.CrossRefPubMed Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, Bleise C, Lylyk P, Putman CM. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg. 2015;7:530–6.CrossRefPubMed
2.
go back to reference Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. 2015;83:80–6.CrossRefPubMed Fukazawa K, Ishida F, Umeda Y, Miura Y, Shimosaka S, Matsushima S, Taki W, Suzuki H. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. 2015;83:80–6.CrossRefPubMed
4.
go back to reference Kono K, Fujimoto T, Shintani A, Terada T. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study. Neurosurgery. 71:E1202-8; discussion 1209. Kono K, Fujimoto T, Shintani A, Terada T. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study. Neurosurgery. 71:E1202-8; discussion 1209.
5.
go back to reference Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis. 2012;34:121–9.CrossRefPubMed Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis. 2012;34:121–9.CrossRefPubMed
6.
go back to reference Liu J, Fan J, Xiang J, Zhang Y, Yang X. Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study. J Neurointerv Surg. 2016;8:367–72.CrossRefPubMed Liu J, Fan J, Xiang J, Zhang Y, Yang X. Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study. J Neurointerv Surg. 2016;8:367–72.CrossRefPubMed
7.
go back to reference Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg. 2010;112:1240–53.CrossRefPubMed Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg. 2010;112:1240–53.CrossRefPubMed
8.
go back to reference Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.CrossRefPubMed Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.CrossRefPubMed
9.
go back to reference Pentimalli L, Modesti A, Vignati A, Marchese E, Albanese A, Di Rocco F, Coletti A, Di Nardo P, Fantini C, Tirpakova B, Maira G. Role of apoptosis in intracranial aneurysm rupture. J Neurosurg. 2004;101:1018–25.CrossRefPubMed Pentimalli L, Modesti A, Vignati A, Marchese E, Albanese A, Di Rocco F, Coletti A, Di Nardo P, Fantini C, Tirpakova B, Maira G. Role of apoptosis in intracranial aneurysm rupture. J Neurosurg. 2004;101:1018–25.CrossRefPubMed
10.
go back to reference Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30:1396–401.CrossRefPubMed Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30:1396–401.CrossRefPubMed
11.
go back to reference Cornelissen BM, Schneiders JJ, Potters WV, van den Berg R, Velthuis BK, Rinkel GJ, Slump CH, VanBavel E, Majoie CB, Marquering HA. Hemodynamic differences in intracranial aneurysms before and after rupture. AJNR Am J Neuroradiol. 2015;36:1927–33.CrossRefPubMed Cornelissen BM, Schneiders JJ, Potters WV, van den Berg R, Velthuis BK, Rinkel GJ, Slump CH, VanBavel E, Majoie CB, Marquering HA. Hemodynamic differences in intracranial aneurysms before and after rupture. AJNR Am J Neuroradiol. 2015;36:1927–33.CrossRefPubMed
Metadata
Title
Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review
Authors
Yisen Zhang
Linkai Jing
Ying Zhang
Jian Liu
Xinjian Yang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2016
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-016-0759-0

Other articles of this Issue 1/2016

BMC Neurology 1/2016 Go to the issue