Skip to main content
Top
Published in: Clinical Oral Investigations 9/2017

01-12-2017 | Original Article

Low-serum culture with novel medium promotes maxillary/mandibular bone marrow stromal cell proliferation and osteogenic differentiation ability

Authors: Fumio Suehiro, Masakazu Ishii, Izumi Asahina, Hiroshi Murata, Masahiro Nishimura

Published in: Clinical Oral Investigations | Issue 9/2017

Login to get access

Abstract

Objectives

The purpose of this study was to evaluate the effect of low-serum STK2 medium on the isolation and osteogenic differentiation of human maxillary/mandibular bone marrow stromal cells (MBMSCs).

Materials and methods

Human MBMSCs were obtained from patients undergoing dental implant treatment. These cells were cultured in serum-free medium or STK2 medium containing 1  % fetal bovine serum (low-serum) or α-MEM containing 10  % fetal bovine serum (control). Proliferation on the culture surface, cell surface antigen expression, and mRNA levels of neural crest and osteogenic markers were examined. Alkaline phosphatase assay and Alizarin red staining were used to assess osteogenic differentiation potential. Immunoblotting analysis was performed to detect ERK phosphorylation.

Results

Low-serum and control MBMSCs were positive for CD73, CD90, and CD105 and negative for CD14, CD34, CD45, CD271, and HLA-DR. CD140a was absent in low-serum cells but present in control cells. Low-serum MBMSCs proliferated more than control MBMSCs. After induction of osteogenic differentiation, alkaline phosphatase activity and osteocalcin mRNA levels were higher in low-serum MBMSCs than in control cells, and Alizarin red staining was stronger in low-serum MBMSCs than in control cells. Low-serum culture promoted ERK phosphorylation.

Conclusions

MBMSCs precultured in low-serum medium exhibited a greater cumulative cell number and a higher osteogenic differentiation capacity than those cultured in control medium.

Clinical relevance

These findings indicate that low-serum STK2 culture might be useful to promote MBMSC proliferation and osteogenic differentiation. This method requires less autologous blood collection for cell expansion than conventional methods, thus reducing the burden on patients.
Literature
1.
go back to reference Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264CrossRefPubMed Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7(6):259–264CrossRefPubMed
2.
go back to reference Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884CrossRefPubMed Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884CrossRefPubMed
3.
go back to reference Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. Journal of embryology and experimental morphology 16(3):381–390PubMed Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. Journal of embryology and experimental morphology 16(3):381–390PubMed
4.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefPubMed
5.
go back to reference Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Miyazaki K, Shimizu M, Bhawal UK, Tsuji K, Nakamura K, Kato Y (2005) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 20(3):399–409. doi:10.1359/JBMR.041117 CrossRef Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Miyazaki K, Shimizu M, Bhawal UK, Tsuji K, Nakamura K, Kato Y (2005) Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 20(3):399–409. doi:10.​1359/​JBMR.​041117 CrossRef
6.
go back to reference Igarashi A, Segoshi K, Sakai Y, Pan H, Kanawa M, Higashi Y, Sugiyama M, Nakamura K, Kurihara H, Yamaguchi S, Tsuji K, Kawamoto T, Kato Y (2007) Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng 13(10):2405–2417. doi:10.1089/ten.2006.0340 CrossRefPubMed Igarashi A, Segoshi K, Sakai Y, Pan H, Kanawa M, Higashi Y, Sugiyama M, Nakamura K, Kurihara H, Yamaguchi S, Tsuji K, Kawamoto T, Kato Y (2007) Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: effects of passage number and donor age. Tissue Eng 13(10):2405–2417. doi:10.​1089/​ten.​2006.​0340 CrossRefPubMed
8.
14.
go back to reference Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679PubMed Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671–1679PubMed
16.
go back to reference Koole R, Bosker H, van der Dussen FN (1989) Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 17(Suppl 1):28–30CrossRef Koole R, Bosker H, van der Dussen FN (1989) Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 17(Suppl 1):28–30CrossRef
18.
go back to reference Vacanti JP, Langer R, Upton J, Marler JJ (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33(1–2):165–182PubMed Vacanti JP, Langer R, Upton J, Marler JJ (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33(1–2):165–182PubMed
19.
go back to reference Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25(7):1603–1609. doi:10.1634/stemcells.2007-0127 CrossRefPubMed Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25(7):1603–1609. doi:10.​1634/​stemcells.​2007-0127 CrossRefPubMed
20.
go back to reference Nuttall PA, Luther PD, Stott EJ (1977) Viral contamination of bovine foetal serum and cell cultures. Nature 266(5605):835–837CrossRefPubMed Nuttall PA, Luther PD, Stott EJ (1977) Viral contamination of bovine foetal serum and cell cultures. Nature 266(5605):835–837CrossRefPubMed
21.
go back to reference Mizuno D, Agata H, Furue H, Kimura A, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H (2010) Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 28(1):34–43. doi:10.3109/08977190903326362 CrossRefPubMed Mizuno D, Agata H, Furue H, Kimura A, Narita Y, Watanabe N, Ishii Y, Ueda M, Tojo A, Kagami H (2010) Limited but heterogeneous osteogenic response of human bone marrow mesenchymal stem cells to bone morphogenetic protein-2 and serum. Growth Factors 28(1):34–43. doi:10.​3109/​0897719090332636​2 CrossRefPubMed
22.
go back to reference Aldahmash A, Haack-Sorensen M, Al-Nbaheen M, Harkness L, Abdallah BM, Kassem M (2011) Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Rev 7(4):860–868. doi:10.1007/s12015-011-9274-2 CrossRefPubMed Aldahmash A, Haack-Sorensen M, Al-Nbaheen M, Harkness L, Abdallah BM, Kassem M (2011) Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Rev 7(4):860–868. doi:10.​1007/​s12015-011-9274-2 CrossRefPubMed
23.
go back to reference Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26. doi:10.1002/jcp.21081 CrossRefPubMed Lange C, Cakiroglu F, Spiess AN, Cappallo-Obermann H, Dierlamm J, Zander AR (2007) Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol 213(1):18–26. doi:10.​1002/​jcp.​21081 CrossRefPubMed
24.
go back to reference Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–419. doi:10.1006/bbrc.2001.5777 CrossRefPubMed Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288(2):413–419. doi:10.​1006/​bbrc.​2001.​5777 CrossRefPubMed
25.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905 CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.​1080/​1465324060085590​5 CrossRefPubMed
28.
go back to reference De Souza Faloni AP, Schoenmaker T, Azari A, Katchburian E, Cerri PS, De Vries TJ, Everts V (2011) Jaw and long bone marrows have a different osteoclastogenic potential. Calcif Tissue Int 88(1):63–74CrossRefPubMed De Souza Faloni AP, Schoenmaker T, Azari A, Katchburian E, Cerri PS, De Vries TJ, Everts V (2011) Jaw and long bone marrows have a different osteoclastogenic potential. Calcif Tissue Int 88(1):63–74CrossRefPubMed
29.
go back to reference Ishikawa I, Sawada R, Kato Y, Tsuji K, Shao J, Yamada T, Kato R, Tsuchiya T (2009) Effectivity of the novel serum-free medium STK2 for proliferating human mesenchymal stem cells. Yakugaku Zasshi 129(3):381–384CrossRefPubMed Ishikawa I, Sawada R, Kato Y, Tsuji K, Shao J, Yamada T, Kato R, Tsuchiya T (2009) Effectivity of the novel serum-free medium STK2 for proliferating human mesenchymal stem cells. Yakugaku Zasshi 129(3):381–384CrossRefPubMed
30.
go back to reference Mittag F, Falkenberg EM, Janczyk A, Gotze M, Felka T, Aicher WK, Kluba T (2012) Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev 4(4):e36. doi:10.4081/or.2012.e36 CrossRef Mittag F, Falkenberg EM, Janczyk A, Gotze M, Felka T, Aicher WK, Kluba T (2012) Laminin-5 and type I collagen promote adhesion and osteogenic differentiation of animal serum-free expanded human mesenchymal stromal cells. Orthop Rev 4(4):e36. doi:10.​4081/​or.​2012.​e36 CrossRef
31.
go back to reference Schleicher I, Parker A, Leavesley D, Crawford R, Upton Z, Xiao Y (2005) Surface modification by complexes of vitronectin and growth factors for serum-free culture of human osteoblasts. Tissue Eng 11(11–12):1688–1698. doi:10.1089/ten.2005.11.1688 CrossRefPubMed Schleicher I, Parker A, Leavesley D, Crawford R, Upton Z, Xiao Y (2005) Surface modification by complexes of vitronectin and growth factors for serum-free culture of human osteoblasts. Tissue Eng 11(11–12):1688–1698. doi:10.​1089/​ten.​2005.​11.​1688 CrossRefPubMed
34.
go back to reference Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112(3):357–366. doi:10.1172/JCI17202 CrossRefPubMedPubMedCentral Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112(3):357–366. doi:10.​1172/​JCI17202 CrossRefPubMedPubMedCentral
35.
go back to reference Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7(12):2103–2111. doi:10.1038/nprot.2012.125 CrossRefPubMed Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 7(12):2103–2111. doi:10.​1038/​nprot.​2012.​125 CrossRefPubMed
38.
go back to reference Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M (2016) Identification of Meflin as a potential marker for mesenchymal stromal cells. Scientific reports 6:22288. doi:10.1038/srep22288 CrossRefPubMedPubMedCentral Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M (2016) Identification of Meflin as a potential marker for mesenchymal stromal cells. Scientific reports 6:22288. doi:10.​1038/​srep22288 CrossRefPubMedPubMedCentral
39.
Metadata
Title
Low-serum culture with novel medium promotes maxillary/mandibular bone marrow stromal cell proliferation and osteogenic differentiation ability
Authors
Fumio Suehiro
Masakazu Ishii
Izumi Asahina
Hiroshi Murata
Masahiro Nishimura
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical Oral Investigations / Issue 9/2017
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-017-2073-7

Other articles of this Issue 9/2017

Clinical Oral Investigations 9/2017 Go to the issue