Skip to main content
Top
Published in: Trials 1/2022

Open Access 01-12-2022 | Low Molecular Weight Heparin | Study protocol

Reduced anticoagulation targets in extracorporeal life support (RATE): study protocol for a randomized controlled trial

Authors: Olivier van Minnen, Annemieke Oude Lansink-Hartgring, Bas van den Boogaard, Judith van den Brule, Pierre Bulpa, Jeroen J. H. Bunge, Thijs S. R. Delnoij, Carlos V. Elzo Kraemer, Marijn Kuijpers, Bernard Lambermont, Jacinta J. Maas, Jesse de Metz, Isabelle Michaux, Ineke van de Pol, Marcel van de Poll, S. Jorinde Raasveld, Matthias Raes, Dinis dos Reis Miranda, Erik Scholten, Olivier Simonet, Fabio S. Taccone, Frederic Vallot, Alexander P. J. Vlaar, Walter M. van den Bergh

Published in: Trials | Issue 1/2022

Login to get access

Abstract

Background

Although life-saving in selected patients, ECMO treatment still has high mortality which for a large part is due to treatment-related complications. A feared complication is ischemic stroke for which heparin is routinely administered for which the dosage is usually guided by activated partial thromboplastin time (aPTT).
However, there is no relation between aPTT and the rare occurrence of ischemic stroke (1.2%), but there is a relation with the much more frequent occurrence of bleeding complications (55%) and blood transfusion. Both are strongly related to outcome.

Methods

We will conduct a three-arm non-inferiority randomized controlled trial, in adult patients treated with ECMO. Participants will be randomized between heparin administration with a target of 2–2.5 times baseline aPTT, 1.5–2 times baseline aPTT, or low molecular weight heparin guided by weight and renal function. Apart from anticoagulation targets, treatment will be according to standard care. The primary outcome parameter is a combined endpoint consisting of major bleeding including hemorrhagic stroke, severe thromboembolic complications including ischemic stroke, and mortality at 6 months.

Discussion

We hypothesize that with lower anticoagulation targets or anticoagulation with LMWH during ECMO therapy, patients will have fewer hemorrhagic complications without an increase in thromboembolic complication or a negative effect on their outcome. If our hypothesis is confirmed, this study could lead to a change in anticoagulation protocols and a better outcome for patients treated with ECMO.

Trial registration

ClinicalTrials.gov NCT04536272. Registered on 2 September 2020. Netherlands Trial Register NL7969
Literature
1.
go back to reference Oude Lansink-Hartgring A, de Vries AJ, Droogh JM, van den Bergh WM. Hemorrhagic complications during extracorporeal membrane oxygenation – the role of anticoagulation and platelets. J Crit Care. 2019;54:239–43.CrossRef Oude Lansink-Hartgring A, de Vries AJ, Droogh JM, van den Bergh WM. Hemorrhagic complications during extracorporeal membrane oxygenation – the role of anticoagulation and platelets. J Crit Care. 2019;54:239–43.CrossRef
3.
go back to reference Sklar MC, Sy E, Lequier L, Fan E, Kanji HD. Anticoagulation practices during venovenous extracorporeal membrane oxygenation for respiratory failure a systematic review. Ann Am Thoracic Soc. 2016;13:2242–50.CrossRef Sklar MC, Sy E, Lequier L, Fan E, Kanji HD. Anticoagulation practices during venovenous extracorporeal membrane oxygenation for respiratory failure a systematic review. Ann Am Thoracic Soc. 2016;13:2242–50.CrossRef
6.
go back to reference Krueger K, Schmutz A, Zieger B, Kalbhenn J. Venovenous extracorporeal membrane oxygenation with prophylactic subcutaneous anticoagulation only: an observational study in more than 60 patients. Artif Organs. 2017;41(2):186–92.CrossRef Krueger K, Schmutz A, Zieger B, Kalbhenn J. Venovenous extracorporeal membrane oxygenation with prophylactic subcutaneous anticoagulation only: an observational study in more than 60 patients. Artif Organs. 2017;41(2):186–92.CrossRef
7.
go back to reference Chung YS, Cho DY, Sohn DS, Lee WS, Won H, Lee DH, et al. Is stopping heparin safe in patients on extracorporeal membrane oxygenation treatment? ASAIO J. 2017;63(1):32–6.CrossRef Chung YS, Cho DY, Sohn DS, Lee WS, Won H, Lee DH, et al. Is stopping heparin safe in patients on extracorporeal membrane oxygenation treatment? ASAIO J. 2017;63(1):32–6.CrossRef
8.
9.
go back to reference Merli G, Spiro TE, Olsson CG, Abildgaard U, Davidson BL, Eldor A, et al. Subcutaneous enoxaparin once or twice daily compared with intravenous unfractionated heparin for treatment of venous thromboembolic disease. Ann Intern Med. 2001;134(3):191–202.CrossRef Merli G, Spiro TE, Olsson CG, Abildgaard U, Davidson BL, Eldor A, et al. Subcutaneous enoxaparin once or twice daily compared with intravenous unfractionated heparin for treatment of venous thromboembolic disease. Ann Intern Med. 2001;134(3):191–202.CrossRef
10.
go back to reference Lazrak HH, René É, Elftouh N, Leblanc M, Lafrance JP. Safety of low-molecular-weight heparin compared to unfractionated heparin in hemodialysis: a systematic review and meta-analysis. BMC Nephrol. 2017;18(1):1–13.CrossRef Lazrak HH, René É, Elftouh N, Leblanc M, Lafrance JP. Safety of low-molecular-weight heparin compared to unfractionated heparin in hemodialysis: a systematic review and meta-analysis. BMC Nephrol. 2017;18(1):1–13.CrossRef
12.
go back to reference Thiagarajan RR, Barbaro RP, Rycus PT, Mcmullan DM, Conrad SA, Fortenberry JD, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(1):60–7.CrossRef Thiagarajan RR, Barbaro RP, Rycus PT, Mcmullan DM, Conrad SA, Fortenberry JD, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(1):60–7.CrossRef
13.
go back to reference NFU. Guideline quality assurance of research involving human subjects; 2020. NFU. Guideline quality assurance of research involving human subjects; 2020.
14.
go back to reference Panigada M, Iapichino E, Brioni M, Panarello G, Protti A, Grasselli G, et al. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: a safety and feasibility pilot study. Ann Intensive Care. 2018;8(1):7. https://doi.org/10.1186/s13613-017-0352-8. Panigada M, Iapichino E, Brioni M, Panarello G, Protti A, Grasselli G, et al. Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: a safety and feasibility pilot study. Ann Intensive Care. 2018;8(1):7. https://​doi.​org/​10.​1186/​s13613-017-0352-8.
15.
go back to reference Delmas C, Jacquemin A, Vardon-Bounes F, Georges B, Guerrero F, Hernandez N, et al. Anticoagulation monitoring under ECMO support: a comparative study between the activated coagulation time and the anti-Xa activity assay. J Intensive Care Med. 2018;1:885066618776937. Delmas C, Jacquemin A, Vardon-Bounes F, Georges B, Guerrero F, Hernandez N, et al. Anticoagulation monitoring under ECMO support: a comparative study between the activated coagulation time and the anti-Xa activity assay. J Intensive Care Med. 2018;1:885066618776937.
16.
go back to reference Annich GM, Zaulan O, Neufeld M, Wagner DRM. Thromboprophylaxis in extracorporeal circuits: current pharmacological strategies and future directions. Am J Cardiovasc Drugs. 2017;17(6):425–39.CrossRef Annich GM, Zaulan O, Neufeld M, Wagner DRM. Thromboprophylaxis in extracorporeal circuits: current pharmacological strategies and future directions. Am J Cardiovasc Drugs. 2017;17(6):425–39.CrossRef
17.
go back to reference Kreyer S, Muders T, Theuerkauf N, Spitzhuttl J, Schellhaas T, Schewe JC, et al. Hemorrhage under veno-venous extracorporeal membrane oxygenation in acute respiratory distress syndrome patients: a retrospective data analysis. J Thorac Dis. 2017;9(12):5017–29.CrossRef Kreyer S, Muders T, Theuerkauf N, Spitzhuttl J, Schellhaas T, Schewe JC, et al. Hemorrhage under veno-venous extracorporeal membrane oxygenation in acute respiratory distress syndrome patients: a retrospective data analysis. J Thorac Dis. 2017;9(12):5017–29.CrossRef
18.
go back to reference Bolliger D, Zenklusen UTK. Point-of-care coagulation management algorithms during ECMO support: are we there yet? Minerva Anestesiol. 2016;82(9):1000–9.PubMed Bolliger D, Zenklusen UTK. Point-of-care coagulation management algorithms during ECMO support: are we there yet? Minerva Anestesiol. 2016;82(9):1000–9.PubMed
19.
go back to reference Ranucci M, Baryshnikova E, Cotza M, Carboni G, Isgro G, Carlucci CBA. Coagulation monitoring in postcardiotomy ECMO: conventional tests, point-of-care, or both? Minerva Anestesiol. 2016;82(8):858–66.PubMed Ranucci M, Baryshnikova E, Cotza M, Carboni G, Isgro G, Carlucci CBA. Coagulation monitoring in postcardiotomy ECMO: conventional tests, point-of-care, or both? Minerva Anestesiol. 2016;82(8):858–66.PubMed
20.
go back to reference Cunningham D, Besser MW, Giraud K, Gerrard CVA. Agreement between ACT and aPTT during extracorporeal membrane oxygenation shows intra- and inter-individual variation. Perfusion. 2016;31(6):503–7.CrossRef Cunningham D, Besser MW, Giraud K, Gerrard CVA. Agreement between ACT and aPTT during extracorporeal membrane oxygenation shows intra- and inter-individual variation. Perfusion. 2016;31(6):503–7.CrossRef
21.
go back to reference Chu DC, Abu-Samra AG, Baird GL, Devers C, Sweeney J, Levy MM, et al. Quantitative measurement of heparin in comparison with conventional anticoagulation monitoring and the risk of thrombotic events in adults on extracorporeal membrane oxygenation. Intensive Care Med. 2015;41(2):369–70.CrossRef Chu DC, Abu-Samra AG, Baird GL, Devers C, Sweeney J, Levy MM, et al. Quantitative measurement of heparin in comparison with conventional anticoagulation monitoring and the risk of thrombotic events in adults on extracorporeal membrane oxygenation. Intensive Care Med. 2015;41(2):369–70.CrossRef
22.
go back to reference Esper SA, Levy JH, Waters JHWI. Extracorporeal membrane oxygenation in the adult: a review of anticoagulation monitoring and transfusion. Anesth Analg. 2014;118(4):731–43.CrossRef Esper SA, Levy JH, Waters JHWI. Extracorporeal membrane oxygenation in the adult: a review of anticoagulation monitoring and transfusion. Anesth Analg. 2014;118(4):731–43.CrossRef
23.
go back to reference Gratz J, Pausch A, Schaden E, Baierl A, Jaksch P, Erhart F, et al. Low molecular weight heparin versus unfractioned heparin for anticoagulation during perioperative extracorporeal membrane oxygenation: a single center experience in 102 lung transplant patients. Artif Organs. 2020;44(6):638–46.CrossRef Gratz J, Pausch A, Schaden E, Baierl A, Jaksch P, Erhart F, et al. Low molecular weight heparin versus unfractioned heparin for anticoagulation during perioperative extracorporeal membrane oxygenation: a single center experience in 102 lung transplant patients. Artif Organs. 2020;44(6):638–46.CrossRef
Metadata
Title
Reduced anticoagulation targets in extracorporeal life support (RATE): study protocol for a randomized controlled trial
Authors
Olivier van Minnen
Annemieke Oude Lansink-Hartgring
Bas van den Boogaard
Judith van den Brule
Pierre Bulpa
Jeroen J. H. Bunge
Thijs S. R. Delnoij
Carlos V. Elzo Kraemer
Marijn Kuijpers
Bernard Lambermont
Jacinta J. Maas
Jesse de Metz
Isabelle Michaux
Ineke van de Pol
Marcel van de Poll
S. Jorinde Raasveld
Matthias Raes
Dinis dos Reis Miranda
Erik Scholten
Olivier Simonet
Fabio S. Taccone
Frederic Vallot
Alexander P. J. Vlaar
Walter M. van den Bergh
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Trials / Issue 1/2022
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-022-06367-w

Other articles of this Issue 1/2022

Trials 1/2022 Go to the issue