Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Low dose triterpene-quinone fraction from Ardisia crispa root precludes chemical-induced mouse skin tumor promotion

Authors: Looi Ting Yeong, Roslida Abdul Hamid, Latifah Saiful Yazan, Huzwah Khaza’ai, Norhafizah Mohtarrudin

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

Drastic increment of skin cancer incidence has driven natural product-based chemoprevention as a promising approach in anticancer drug development. Apart from its traditional usages against various ailments, Ardisia crispa (Family: Myrsinaceae) specifically its triterpene-quinone fraction (TQF) which was isolated from the root hexane extract (ACRH) was recently reported to exert antitumor promoting activity in vitro. This study aimed at determining chemopreventive effect of TQF against chemically-induced mouse skin tumorigenesis as well as elucidating its possible pathway(s).

Methods

Mice (n = 10) were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μl) followed by, a week later, repeated promotion (twice weekly; 20 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μl). TQF (10, 30 and 100 mg/kg) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application. Upon termination, histopathological and biochemical analysis, as well as Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and transcription factor enzyme-linked immunosorbent assay (ELISA) assays were performed to elucidate the potential mechanism of TQF.

Results

With comparison to the carcinogen control, results revealed that lower dose of TQF (10 mg/kg) conferred antitumor promoting effect via significant (P < 0.05) suppression against lipid peroxidation (LPO), apoptotic index (cell death) and nuclear factor-kappa B (NF-κB), along with reduction of keratinocyte proliferation; whilst its higher dose (100 mg/kg) was found to promote tumorigenesis by significantly (P < 0.05) increasing LPO and apoptotic index, in addition to aggravating keratinocyte proliferation.

Conclusions

This study evidenced that TQF, particularly at its lower dosage (10 mg/kg), ameliorated DMBA/TPA-induced mouse skin tumorigenesis. Though, future investigations are warranted to determine the lowest possible therapeutic dose of TQF in subsequent in vivo chemopreventive studies.
Literature
2.
go back to reference Fürstenberger G, Sorg B, Marks F. Tumor promotion by phorbol esters in skin: evidence for a memory effect. Science. 1983;220:89–91.CrossRefPubMed Fürstenberger G, Sorg B, Marks F. Tumor promotion by phorbol esters in skin: evidence for a memory effect. Science. 1983;220:89–91.CrossRefPubMed
3.
go back to reference Duke JA, Ayensu ES. Medicinal Plants of China. Algonac, MI: Reference; 1985. p. 705. Duke JA, Ayensu ES. Medicinal Plants of China. Algonac, MI: Reference; 1985. p. 705.
4.
go back to reference Perry LM, Metzger J. Medicinal plants of East and Southeast Asia: attributed properties and uses. Cambridge, MA: MIT Press; 1980. p. 620. Perry LM, Metzger J. Medicinal plants of East and Southeast Asia: attributed properties and uses. Cambridge, MA: MIT Press; 1980. p. 620.
5.
go back to reference Muhamad Z, Mustafa AM. Traditional Malay Medicinal Plants. Kuala Lumpur: Fajar Bakti; 1994. p. 185. Muhamad Z, Mustafa AM. Traditional Malay Medicinal Plants. Kuala Lumpur: Fajar Bakti; 1994. p. 185.
6.
go back to reference Roslida AH, Kim KH. Anti-inflammatory and anti-hyperalgesic effects of Ardisia crispa Thunb. D.C. Pharmacogn Mag. 2008;4:262–8. Roslida AH, Kim KH. Anti-inflammatory and anti-hyperalgesic effects of Ardisia crispa Thunb. D.C. Pharmacogn Mag. 2008;4:262–8.
7.
go back to reference Lau MF, Roslida AH, Sabrina S, Nhareet SM. Anti-inflammatory and anti-pyretic effects of hexane fraction of Ardisia crispa Thunb. D.C. Pharmacologyonline. 2009;3:29–39. Lau MF, Roslida AH, Sabrina S, Nhareet SM. Anti-inflammatory and anti-pyretic effects of hexane fraction of Ardisia crispa Thunb. D.C. Pharmacologyonline. 2009;3:29–39.
8.
go back to reference Roslida A, Fezah O, Yeong LT. Suppression of DMBA/croton oil-induced mouse skin tumor promotion by Ardisia crispa root hexane extract. Asian Pac J Cancer Prev. 2011;12:665–9.PubMed Roslida A, Fezah O, Yeong LT. Suppression of DMBA/croton oil-induced mouse skin tumor promotion by Ardisia crispa root hexane extract. Asian Pac J Cancer Prev. 2011;12:665–9.PubMed
9.
go back to reference Sulaiman H, Hamid RA, Ting YL, Othman F. Anti-tumor effect of Ardisia crispa hexane fraction on 7,12-dimethylbenz[α]anthracene-induced mouse skin papillomagenesis. Asian Pac J Cancer Prev. 2012;8:404–10. Sulaiman H, Hamid RA, Ting YL, Othman F. Anti-tumor effect of Ardisia crispa hexane fraction on 7,12-dimethylbenz[α]anthracene-induced mouse skin papillomagenesis. Asian Pac J Cancer Prev. 2012;8:404–10.
10.
go back to reference Hamid RA, Othman F, Anthony JJ, Ting YL. Chemopreventive effect of Ardisia crispa hexane fraction on the peri-initiation phase of mouse skin tumorigenesis. Med Princ Pract. 2013;22:357–61.CrossRefPubMed Hamid RA, Othman F, Anthony JJ, Ting YL. Chemopreventive effect of Ardisia crispa hexane fraction on the peri-initiation phase of mouse skin tumorigenesis. Med Princ Pract. 2013;22:357–61.CrossRefPubMed
11.
go back to reference Yeong LT, Hamid RA, Yazan LS, Khaza’ai H. Isolation of a quinone-rich fraction from Ardisia crispa roots and its attenuating effects on murine skin tumorigenesis. Asian Pac J Cancer Prev. 2013;14:2301–5.CrossRefPubMed Yeong LT, Hamid RA, Yazan LS, Khaza’ai H. Isolation of a quinone-rich fraction from Ardisia crispa roots and its attenuating effects on murine skin tumorigenesis. Asian Pac J Cancer Prev. 2013;14:2301–5.CrossRefPubMed
12.
go back to reference Yeong LT, Hamid RA, Yazan LS, Khaza’ai H, Hamsin DEZA. Synergistic action of compounds isolated from the hexane extract of Ardisia crispa root against tumour promoting effect, in vitro. Nat Prod Res. 2014;28:2026–30.CrossRefPubMed Yeong LT, Hamid RA, Yazan LS, Khaza’ai H, Hamsin DEZA. Synergistic action of compounds isolated from the hexane extract of Ardisia crispa root against tumour promoting effect, in vitro. Nat Prod Res. 2014;28:2026–30.CrossRefPubMed
13.
go back to reference Dash DK, Yeligar VC, Nayak SS, Ghosh T, Rajalingam R, Sengupta P, et al. Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R.Br. on paracetamol-induced hepatotoxicity in rats. Trop J Pharm Res. 2007;6:755–65.CrossRef Dash DK, Yeligar VC, Nayak SS, Ghosh T, Rajalingam R, Sengupta P, et al. Evaluation of hepatoprotective and antioxidant activity of Ichnocarpus frutescens (Linn.) R.Br. on paracetamol-induced hepatotoxicity in rats. Trop J Pharm Res. 2007;6:755–65.CrossRef
14.
go back to reference Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.CrossRefPubMed Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.CrossRefPubMed
15.
go back to reference Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–78.CrossRefPubMed Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta. 1979;582:67–78.CrossRefPubMed
16.
go back to reference Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–2.PubMed Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984;21:130–2.PubMed
17.
go back to reference Raja S, Ahamed HN, Kumar V, Mukherjee K, Bandyopadhyay A, Mukherjee PK. Exploring the effect of Cytisus scoparius on markers of oxidative stress in rats. Iran J Pharmacol Ther. 2007;6:15–21. Raja S, Ahamed HN, Kumar V, Mukherjee K, Bandyopadhyay A, Mukherjee PK. Exploring the effect of Cytisus scoparius on markers of oxidative stress in rats. Iran J Pharmacol Ther. 2007;6:15–21.
18.
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed
19.
go back to reference Sporn MB, Suh N. Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer. 2002;2:537–43.CrossRefPubMed Sporn MB, Suh N. Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer. 2002;2:537–43.CrossRefPubMed
20.
go back to reference Kwon KH, Barve A, Yu S, Huang MT, Kong AN. Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models. Acta Pharmacol Sin. 2007;28:1409–21.CrossRefPubMed Kwon KH, Barve A, Yu S, Huang MT, Kong AN. Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models. Acta Pharmacol Sin. 2007;28:1409–21.CrossRefPubMed
21.
22.
go back to reference Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat Protoc. 2009;4:1350–62.CrossRefPubMedPubMedCentral Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat Protoc. 2009;4:1350–62.CrossRefPubMedPubMedCentral
23.
go back to reference Burns FJ, Albert RE, Altshuler B. Cancer progression in mouse skin. In: Slaga TJ, editor. Mechanisms of tumor promotion (Vol. 2). Tumor promotion and skin carcinogenesis. Boca Raton, FL: CRC Press; 1984. p. 17–39. Burns FJ, Albert RE, Altshuler B. Cancer progression in mouse skin. In: Slaga TJ, editor. Mechanisms of tumor promotion (Vol. 2). Tumor promotion and skin carcinogenesis. Boca Raton, FL: CRC Press; 1984. p. 17–39.
24.
go back to reference Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol. 2005;70:700–13.CrossRefPubMed Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol. 2005;70:700–13.CrossRefPubMed
25.
go back to reference Manna SK, Babajan B, Raghavendra PB, Raviprakash N, Sureshkumar C. Inhibiting TRAF2-mediated activation of NF-kappaB facilitates induction of AP-1. J Biol Chem. 2010;285:11617–27.CrossRefPubMedPubMedCentral Manna SK, Babajan B, Raghavendra PB, Raviprakash N, Sureshkumar C. Inhibiting TRAF2-mediated activation of NF-kappaB facilitates induction of AP-1. J Biol Chem. 2010;285:11617–27.CrossRefPubMedPubMedCentral
27.
go back to reference Singh N, Poirier G, Cerutti P. Tumor promoter phorbol-12-myristate-13-acetate induces poly (ADP)-ribosylation in fibroblasts. Eur Mol Biol Organ J. 1985;4:1491–4. Singh N, Poirier G, Cerutti P. Tumor promoter phorbol-12-myristate-13-acetate induces poly (ADP)-ribosylation in fibroblasts. Eur Mol Biol Organ J. 1985;4:1491–4.
28.
go back to reference Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science. 2002;297:547–51.CrossRefPubMed Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science. 2002;297:547–51.CrossRefPubMed
29.
go back to reference Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005;7:32–41.CrossRefPubMed Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal. 2005;7:32–41.CrossRefPubMed
30.
go back to reference Pinlaor S, Yongvanit P, Prakobwong S, Kaewsamut B, Khoontawad J, Pinlaor P, et al. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant–antioxidant status in hamsters infected with Opisthorchis viverrini. Mol Nutr Food Res. 2009;53:1316–28.CrossRefPubMed Pinlaor S, Yongvanit P, Prakobwong S, Kaewsamut B, Khoontawad J, Pinlaor P, et al. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant–antioxidant status in hamsters infected with Opisthorchis viverrini. Mol Nutr Food Res. 2009;53:1316–28.CrossRefPubMed
31.
go back to reference Hill BA, Kleiner HE, Ryan EA, Dulik DM, Monks TJ, Lau SS. Identification of multi-S-substituted conjugates of hydroquinone by HPLC-coulometric electrode array analysis and mass spectroscopy. Chem Res Toxicol. 1993;6:459–69.CrossRefPubMed Hill BA, Kleiner HE, Ryan EA, Dulik DM, Monks TJ, Lau SS. Identification of multi-S-substituted conjugates of hydroquinone by HPLC-coulometric electrode array analysis and mass spectroscopy. Chem Res Toxicol. 1993;6:459–69.CrossRefPubMed
32.
go back to reference Kappus H, Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia. 1981;37:1233–41.CrossRefPubMed Kappus H, Sies H. Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia. 1981;37:1233–41.CrossRefPubMed
33.
go back to reference Ramachandran S, Prasad NR, Pugalendi K, Menon VP. Modulation of UVB-induced oxidative stress by ursolic acid in human blood lymphocytes. Asian J Biochem. 2008;3:11–8.CrossRef Ramachandran S, Prasad NR, Pugalendi K, Menon VP. Modulation of UVB-induced oxidative stress by ursolic acid in human blood lymphocytes. Asian J Biochem. 2008;3:11–8.CrossRef
34.
go back to reference Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J. 2003;17:473–5.PubMed Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J. 2003;17:473–5.PubMed
35.
go back to reference Biswas J, Sinha D, Mukherjee S, Roy S, Siddiqi M, Roy M. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Hum Exp Toxicol. 2010;29:513–24.CrossRefPubMed Biswas J, Sinha D, Mukherjee S, Roy S, Siddiqi M, Roy M. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Hum Exp Toxicol. 2010;29:513–24.CrossRefPubMed
36.
go back to reference Banerjee A, Kunwar A, Mishra B, Priyadarsini KI. Concentration dependent antioxidant/pro-oxidant activity of curcumin: Studies from AAPH induced hemolysis of RBCs. Chem Biol Interact. 2008;174:134–9.CrossRefPubMed Banerjee A, Kunwar A, Mishra B, Priyadarsini KI. Concentration dependent antioxidant/pro-oxidant activity of curcumin: Studies from AAPH induced hemolysis of RBCs. Chem Biol Interact. 2008;174:134–9.CrossRefPubMed
37.
go back to reference Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J. Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide. Pol J Environ Stud. 2004;13:303–9. Łukaszewicz-Hussain A, Moniuszko-Jakoniuk J. Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide. Pol J Environ Stud. 2004;13:303–9.
38.
go back to reference Spolarics Z, Wu JX. Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. Am J Physiol. 1997;273:G1304–11.PubMed Spolarics Z, Wu JX. Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. Am J Physiol. 1997;273:G1304–11.PubMed
39.
go back to reference Sevgiler Y, Karaytug S, Karayakar F. Antioxidative effects of N-acetylcysteine, lipoic acid, taurine, and curcumin in the muscle of Cyprinus carpio L. exposed to cadmium. Arch Ind Hyg Toxicol. 2011;62:1–9.CrossRef Sevgiler Y, Karaytug S, Karayakar F. Antioxidative effects of N-acetylcysteine, lipoic acid, taurine, and curcumin in the muscle of Cyprinus carpio L. exposed to cadmium. Arch Ind Hyg Toxicol. 2011;62:1–9.CrossRef
40.
go back to reference Guangwei X, Rongzhu L, Wenrong X, Suhua W, Xiaowu Z, Shizhong W, et al. Curcumin pretreatment protects against acute acrylonitrile-induced oxidative damage in rats. Toxicology. 2010;267:140–6.CrossRefPubMed Guangwei X, Rongzhu L, Wenrong X, Suhua W, Xiaowu Z, Shizhong W, et al. Curcumin pretreatment protects against acute acrylonitrile-induced oxidative damage in rats. Toxicology. 2010;267:140–6.CrossRefPubMed
41.
go back to reference Sharma M, Rakhi A, Dalal N, Sharma N. Design, synthesis and evaluation of lantadene A congener with hydroxyl functionality in ring A as an antitumour agent. Nat Prod Res. 2011;25:387–96.CrossRefPubMed Sharma M, Rakhi A, Dalal N, Sharma N. Design, synthesis and evaluation of lantadene A congener with hydroxyl functionality in ring A as an antitumour agent. Nat Prod Res. 2011;25:387–96.CrossRefPubMed
42.
go back to reference Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73:1434–45.CrossRefPubMed Shakibaei M, John T, Schulze-Tanzil G, Lehmann I, Mobasheri A. Suppression of NF-kappaB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem Pharmacol. 2007;73:1434–45.CrossRefPubMed
43.
go back to reference Hamsin DEZA, Hamid RA, Yazan LS, Taib CNM, Yeong LT. Ardisia crispa roots inhibit cyclooxygenase and suppress angiogenesis. BMC Complement Altern Med. 2014;14:102.CrossRefPubMed Hamsin DEZA, Hamid RA, Yazan LS, Taib CNM, Yeong LT. Ardisia crispa roots inhibit cyclooxygenase and suppress angiogenesis. BMC Complement Altern Med. 2014;14:102.CrossRefPubMed
44.
go back to reference Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007;28:1765–73.CrossRefPubMed Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007;28:1765–73.CrossRefPubMed
45.
go back to reference Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell. 2004;15:713–25.CrossRefPubMed Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell. 2004;15:713–25.CrossRefPubMed
46.
go back to reference Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz[α]anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2–related factor 2. Cancer Res. 2006;66:8293–6.CrossRefPubMed Xu C, Huang MT, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7,12-dimethylbenz[α]anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2–related factor 2. Cancer Res. 2006;66:8293–6.CrossRefPubMed
48.
go back to reference Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005;224:171–84.CrossRefPubMed Lee JS, Surh YJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005;224:171–84.CrossRefPubMed
49.
go back to reference Kensler TW, Wakabayashi N. Nrf2: friend or foe for chemoprevention? Carcinogenesis. 2010;31:90–9.CrossRefPubMed Kensler TW, Wakabayashi N. Nrf2: friend or foe for chemoprevention? Carcinogenesis. 2010;31:90–9.CrossRefPubMed
50.
go back to reference Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer. 2007;7:357–69.CrossRefPubMed Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer. 2007;7:357–69.CrossRefPubMed
Metadata
Title
Low dose triterpene-quinone fraction from Ardisia crispa root precludes chemical-induced mouse skin tumor promotion
Authors
Looi Ting Yeong
Roslida Abdul Hamid
Latifah Saiful Yazan
Huzwah Khaza’ai
Norhafizah Mohtarrudin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0954-3

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue