Skip to main content
Top
Published in: Molecular Imaging and Biology 1/2006

01-01-2006 | Original Article

Longitudinal MicroPET Imaging of Brain Tumor Growth with F-18-labeled RGD Peptide

Authors: Xiaoyuan Chen, PhD, Ryan Park, BS, Vazgen Khankaldyyan, BS, Ignacio Gonzales-Gomez, MD, Michel Tohme, MS, Rex A. Moats, PhD, James R. Bading, PhD, Walter E. Laug, MD, Peter S. Conti, MD, PhD

Published in: Molecular Imaging and Biology | Issue 1/2006

Login to get access

Abstract

Purpose

EMD 121974, a potent cyclic RGD peptide inhibitor of α v-integrins, demonstrated effectiveness in suppressing brain tumor growth in both preclinical models and phases I/II clinical trials. The ability to non-invasively evaluate α v-integrin expression provides a novel and unique way to better understand brain tumor angiogenesis in relationship to α v-integrin expression, and allow for direct assessment of anti-integrin treatment efficacy.

Procedures

We developed a F-18-labeled RGD peptide [F-18]FB-RGD and performed serial microPET imaging scans to follow brain tumor growth and angiogenesis as a function of time in an orthotopic U87MG glioblastoma xenograft model in athymic nude mice.

Results

The tumor was barely visible on microPET at the size of ≤1.5 mm diameter at which time no angiogenesis was evident on histological examination. When tumor started to grow exponentially by day 35 the activity accumulation in the brain tumor also increased accordingly, with best tumor-to-brain contrast seven weeks after inoculation of 105 U87MG cells into the mice forebrain.

Conclusions

Longitudinal microPET imaging and [F-18]FB-RGD provides the sensitivity and resolution to visualize and quantify anatomical variations during brain tumor growth and angiogenesis, most likely through interaction with α v-integrins expressed on tumor cells and angiogenic tumor vessels.
Literature
1.
2.
go back to reference Boiardi A, Silvani A, Pozzi A, et al. (1997) Advantage of treating anaplastic gliomas with aggressive protocol combining chemotherapy and radiotherapy. J Neuro-Oncol 34:179–185CrossRef Boiardi A, Silvani A, Pozzi A, et al. (1997) Advantage of treating anaplastic gliomas with aggressive protocol combining chemotherapy and radiotherapy. J Neuro-Oncol 34:179–185CrossRef
3.
go back to reference Puduvalli VK, Yung AW (1998) New frontiers in therapy of malignant gliomas. Forum 8:261–269PubMed Puduvalli VK, Yung AW (1998) New frontiers in therapy of malignant gliomas. Forum 8:261–269PubMed
4.
go back to reference Puduvalli VK, Sawaya R (2000) Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neuro-Oncol 50:189–200CrossRef Puduvalli VK, Sawaya R (2000) Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neuro-Oncol 50:189–200CrossRef
5.
go back to reference Taga T, Suzuki A, Gonzalez-Gomez I, et al. (2002) Alpha(v)-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697CrossRefPubMed Taga T, Suzuki A, Gonzalez-Gomez I, et al. (2002) Alpha(v)-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 98:690–697CrossRefPubMed
6.
go back to reference MacDonald TJ, Taga T, Shimada H, et al. (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha-v integrin antagonist. Neurosurgery 48:151–157CrossRefPubMed MacDonald TJ, Taga T, Shimada H, et al. (2001) Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha-v integrin antagonist. Neurosurgery 48:151–157CrossRefPubMed
7.
go back to reference Cristofanilli M, Charnsangavej C, Hortobagyi GN (2002) Angiogenesis modulation in cancer research: Novel clinical approaches. Nat Rev Drug Discov 1:415–426CrossRef Cristofanilli M, Charnsangavej C, Hortobagyi GN (2002) Angiogenesis modulation in cancer research: Novel clinical approaches. Nat Rev Drug Discov 1:415–426CrossRef
8.
go back to reference Anderson SA, Rader RK, Westlin WF, et al. (2000) Magnetic resonance contrast enhancement of neovasculature with α v β 3-targeted nanoparticles. Magn Reson Med 44:433–439CrossRefPubMed Anderson SA, Rader RK, Westlin WF, et al. (2000) Magnetic resonance contrast enhancement of neovasculature with α v β 3-targeted nanoparticles. Magn Reson Med 44:433–439CrossRefPubMed
9.
go back to reference Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by α v β 3-targeted magnetic resonance imaging. Nat Med 4:623–626CrossRefPubMed Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by α v β 3-targeted magnetic resonance imaging. Nat Med 4:623–626CrossRefPubMed
10.
go back to reference Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefPubMed Chen X, Park R, Shahinian AH, Bading JR, Conti PS (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 31:11–19CrossRefPubMed
11.
go back to reference Chen X, Park R, Shahinian AH, et al. (2004) 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189CrossRefPubMed Chen X, Park R, Shahinian AH, et al. (2004) 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31:179–189CrossRefPubMed
12.
go back to reference Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS (2004) MicroPET and autoradiographic imaging of breast cancer α v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49CrossRefPubMed Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS (2004) MicroPET and autoradiographic imaging of breast cancer α v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49CrossRefPubMed
13.
go back to reference Chen X, Park R, Hou Y, et al. (2004) MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 31:1081–1089CrossRefPubMed Chen X, Park R, Hou Y, et al. (2004) MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide. Eur J Nucl Med Mol Imaging 31:1081–1089CrossRefPubMed
14.
go back to reference Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004) MicroPET imaging of α v β 3 integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104CrossRefPubMed Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS (2004) MicroPET imaging of α v β 3 integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 3:96–104CrossRefPubMed
15.
go back to reference Chen X, Hou Y, Tohme M, et al. (2004) PEGylated RGD peptide: 64Cu-labeleing and PET imaging of brain tumor integrin α v β 3 expression. J Nucl Med 45:1776–1783PubMed Chen X, Hou Y, Tohme M, et al. (2004) PEGylated RGD peptide: 64Cu-labeleing and PET imaging of brain tumor integrin α v β 3 expression. J Nucl Med 45:1776–1783PubMed
16.
go back to reference Chen X, Liu S, Hou Y, et al. (2004) MicroPET imaging of breast cancer α v-integrin expression with 64Cu-labeled dimeric RGD Peptides. Mol Imaging Biol 6:350–359CrossRefPubMed Chen X, Liu S, Hou Y, et al. (2004) MicroPET imaging of breast cancer α v-integrin expression with 64Cu-labeled dimeric RGD Peptides. Mol Imaging Biol 6:350–359CrossRefPubMed
17.
go back to reference Hauber R, Kuhnast B, Mang C, et al. (2004) [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15:61–69CrossRefPubMed Hauber R, Kuhnast B, Mang C, et al. (2004) [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15:61–69CrossRefPubMed
18.
go back to reference Haubner R, Wester HJ, Weber WA, et al. (2001) Noninvasive imaging of α v β 3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785PubMed Haubner R, Wester HJ, Weber WA, et al. (2001) Noninvasive imaging of α v β 3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785PubMed
19.
go back to reference Haubner R, Wester HJ, Burkhart F, et al. (2001) Glycosylated RGD-containing peptides: Tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMed Haubner R, Wester HJ, Burkhart F, et al. (2001) Glycosylated RGD-containing peptides: Tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336PubMed
20.
go back to reference Haubner R, Wester HJ, Reuning U, et al. (1999) Radiolabeled α v β 3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071PubMed Haubner R, Wester HJ, Reuning U, et al. (1999) Radiolabeled α v β 3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40:1061–1071PubMed
21.
go back to reference Janssen M, Oyen WJ, Massuger LF, et al. (2002) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 17:641–646CrossRefPubMed Janssen M, Oyen WJ, Massuger LF, et al. (2002) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 17:641–646CrossRefPubMed
22.
go back to reference Janssen ML, Oyen WJ, Dijkgraaf I, et al. (2002) Tumor targeting with radiolabeled α v β 3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMed Janssen ML, Oyen WJ, Dijkgraaf I, et al. (2002) Tumor targeting with radiolabeled α v β 3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151PubMed
23.
go back to reference Van Hagen PM, Breeman WA, Bernard HF, et al. (2000) Evaluation of a radiolabeled cyclic DTPA-RGD analogue for tumor imaging and radionuclide therapy. Int J Cancer 90:186–198CrossRefPubMed Van Hagen PM, Breeman WA, Bernard HF, et al. (2000) Evaluation of a radiolabeled cyclic DTPA-RGD analogue for tumor imaging and radionuclide therapy. Int J Cancer 90:186–198CrossRefPubMed
24.
go back to reference Ellegala DB, Leong-Poi H, Carpenter JE, et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to α v β 3. Circulation 108:336–341CrossRefPubMed Ellegala DB, Leong-Poi H, Carpenter JE, et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to α v β 3. Circulation 108:336–341CrossRefPubMed
25.
go back to reference Greenberg HS, Chandler WF, Sandler HM (1999) Brain Tumors (Contemporary Neurology Series, 54). New York: Oxford University Press. Greenberg HS, Chandler WF, Sandler HM (1999) Brain Tumors (Contemporary Neurology Series, 54). New York: Oxford University Press.
26.
go back to reference Spence AM, Muzi M, Krohn KA (2002) Molecular imaging of regional brain tumor biology. J Cell Biochem 39(Suppl):25–35CrossRef Spence AM, Muzi M, Krohn KA (2002) Molecular imaging of regional brain tumor biology. J Cell Biochem 39(Suppl):25–35CrossRef
27.
go back to reference Blouw B, Song H, Tihan T (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146CrossRefPubMed Blouw B, Song H, Tihan T (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146CrossRefPubMed
28.
go back to reference Holash J, Maisonpierre PC, Compton D, et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998CrossRefPubMed Holash J, Maisonpierre PC, Compton D, et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998CrossRefPubMed
29.
go back to reference Zagzag D, Amirnovin R, Greco MA, et al. (2000) Vascular apoptosis and involution in gliomas precede neovascularization: A novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849PubMed Zagzag D, Amirnovin R, Greco MA, et al. (2000) Vascular apoptosis and involution in gliomas precede neovascularization: A novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849PubMed
30.
31.
go back to reference Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin α v β 3 for angiogenesis. Science 264:569–571PubMedCrossRef Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin α v β 3 for angiogenesis. Science 264:569–571PubMedCrossRef
32.
go back to reference Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42:248–262PubMed Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42:248–262PubMed
33.
go back to reference Toyama H, Ichise M, Liow JS, et al. (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256CrossRefPubMed Toyama H, Ichise M, Liow JS, et al. (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256CrossRefPubMed
Metadata
Title
Longitudinal MicroPET Imaging of Brain Tumor Growth with F-18-labeled RGD Peptide
Authors
Xiaoyuan Chen, PhD
Ryan Park, BS
Vazgen Khankaldyyan, BS
Ignacio Gonzales-Gomez, MD
Michel Tohme, MS
Rex A. Moats, PhD
James R. Bading, PhD
Walter E. Laug, MD
Peter S. Conti, MD, PhD
Publication date
01-01-2006
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 1/2006
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-005-0024-1

Other articles of this Issue 1/2006

Molecular Imaging and Biology 1/2006 Go to the issue