Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Research

Longitudinal cerebrospinal fluid measurements show glial hypo- and hyperactivation in predementia Alzheimer’s disease

Authors: Kaja Nordengen, Bjørn-Eivind Kirsebom, Grit Richter, Lene Pålhaugen, Berglind Gísladóttir, Nikias Siafarikas, Arne Nakling, Arvid Rongve, Geir Bråthen, Gøril Rolfseng Grøntvedt, Fernando Gonzalez, Knut Waterloo, Kulbhushan Sharma, Thomas Karikari, Eleonora M. Vromen, Betty M. Tijms, Pieter J. Visser, Per Selnes, Milicia G. Kramberger, Bengt Winblad, Kaj Blennow, Tormod Fladby

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

Brain innate immune activation is associated with Alzheimer’s disease (AD), but degrees of activation may vary between disease stages. Thus, brain innate immune activation must be assessed in longitudinal clinical studies that include biomarker negative healthy controls and cases with established AD pathology. Here, we employ longitudinally sampled cerebrospinal fluid (CSF) core AD, immune activation and glial biomarkers to investigate early (predementia stage) innate immune activation levels and biomarker profiles.

Methods

We included non-demented cases from a longitudinal observational cohort study, with CSF samples available at baseline (n = 535) and follow-up (n = 213), between 1 and 6 years from baseline (mean 2.8 years). We measured Aβ42/40 ratio, p-tau181, and total-tau to determine Ab (A+), tau-tangle pathology (T+), and neurodegeneration (N+), respectively. We classified individuals into these groups: A−/T−/N−, A+/T−/N−, A+/T+ or N+, or A−/T+ or N+. Using linear and mixed linear regression, we compared levels of CSF sTREM2, YKL-40, clusterin, fractalkine, MCP-1, IL-6, IL-1, IL-18, and IFN-γ both cross-sectionally and longitudinally between groups. A post hoc analysis was also performed to assess biomarker differences between cognitively healthy and impaired individuals in the A+/T+ or N+ group.

Results

Cross-sectionally, CSF sTREM2, YKL-40, clusterin and fractalkine were higher only in groups with tau pathology, independent of amyloidosis (p < 0.001, A+/T+ or N+ and A−/T+ or N+, compared to A−/T−/N−). No significant group differences were observed for the cytokines CSF MCP-1, IL-6, IL-10, IL18 or IFN-γ. Longitudinally, CSF YKL-40, fractalkine and IFN-γ were all significantly lower in stable A+/T−/N− cases (all p < 0.05). CSF sTREM2, YKL-40, clusterin, fractalkine (p < 0.001) and MCP-1 (p < 0.05) were all higher in T or N+, with or without amyloidosis at baseline, but remained stable over time. High CSF sTREM2 was associated with preserved cognitive function within the A+/T+ or N+ group, relative to the cognitively impaired with the same A/T/N biomarker profile (p < 0.01).

Conclusions

Immune hypoactivation and reduced neuron–microglia communication are observed in isolated amyloidosis while activation and increased fractalkine accompanies tau pathology in predementia AD. Glial hypo- and hyperactivation through the predementia AD continuum suggests altered glial interaction with Ab and tau pathology, and may necessitate differential treatments, depending on the stage and patient-specific activation patterns.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14(4):535–62.CrossRefPubMed Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dementia. 2018;14(4):535–62.CrossRefPubMed
2.
go back to reference Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456.CrossRefPubMedPubMedCentral Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, et al. A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol. 2020;11:456.CrossRefPubMedPubMedCentral
3.
go back to reference Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53(9):1276–82.CrossRefPubMedPubMedCentral Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53(9):1276–82.CrossRefPubMedPubMedCentral
5.
go back to reference Zhang L, Xu J, Gao J, Wu Y, Yin M, Zhao W. CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer’s disease. Rev Neurosci. 2018;29(8):837–48.CrossRefPubMed Zhang L, Xu J, Gao J, Wu Y, Yin M, Zhao W. CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer’s disease. Rev Neurosci. 2018;29(8):837–48.CrossRefPubMed
6.
go back to reference Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.CrossRefPubMed Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.CrossRefPubMed
8.
go back to reference Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.CrossRefPubMedPubMedCentral Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.CrossRefPubMedPubMedCentral
9.
go back to reference Nordengen K, Kirsebom B-E, Henjum K, Selnes P, Gísladóttir B, Wettergreen M, et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation. 2019;16(1):46.CrossRefPubMedPubMedCentral Nordengen K, Kirsebom B-E, Henjum K, Selnes P, Gísladóttir B, Wettergreen M, et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflammation. 2019;16(1):46.CrossRefPubMedPubMedCentral
10.
go back to reference Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.CrossRefPubMed Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.CrossRefPubMed
11.
go back to reference Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer’s disease risk genes in endolysosomal pathways. Neurobiol Dis. 2022;162: 105576.CrossRefPubMed Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer’s disease risk genes in endolysosomal pathways. Neurobiol Dis. 2022;162: 105576.CrossRefPubMed
12.
go back to reference Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27.CrossRefPubMed Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27.CrossRefPubMed
13.
go back to reference Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. 2019;11(505):eaau2291.CrossRefPubMedPubMedCentral Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. 2019;11(505):eaau2291.CrossRefPubMedPubMedCentral
14.
go back to reference Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018;48(5):979-91.e8.CrossRefPubMed Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity. 2018;48(5):979-91.e8.CrossRefPubMed
15.
go back to reference Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun. 2019;10(1):1365.CrossRefPubMedPubMedCentral Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun. 2019;10(1):1365.CrossRefPubMedPubMedCentral
16.
go back to reference Belsare KD, Wu H, Mondal D, Bond A, Castillo E, Jin J, et al. Soluble TREM2 inhibits secondary nucleation of Aβ fibrillization and enhances cellular uptake of fibrillar Aβ. Proc Natl Acad Sci U S A. 2022;119(5): e2114486119.CrossRefPubMedPubMedCentral Belsare KD, Wu H, Mondal D, Bond A, Castillo E, Jin J, et al. Soluble TREM2 inhibits secondary nucleation of Aβ fibrillization and enhances cellular uptake of fibrillar Aβ. Proc Natl Acad Sci U S A. 2022;119(5): e2114486119.CrossRefPubMedPubMedCentral
17.
go back to reference Sokolova D, Childs T, Hong S. Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer’s disease. Faculty Rev. 2021;10:19.CrossRef Sokolova D, Childs T, Hong S. Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer’s disease. Faculty Rev. 2021;10:19.CrossRef
18.
go back to reference Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron. 2016;91(2):328–40.CrossRefPubMed Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron. 2016;91(2):328–40.CrossRefPubMed
19.
go back to reference Zandl-Lang M, Fanaee-Danesh E, Sun Y, Albrecher NM, Gali CC, Čančar I, et al. Regulatory effects of simvastatin and apoJ on APP processing and amyloid-β clearance in blood-brain barrier endothelial cells. Biochim et Biophys Acta BBA Mol Cell Biol Lipids. 2018;1863(1):40–60. Zandl-Lang M, Fanaee-Danesh E, Sun Y, Albrecher NM, Gali CC, Čančar I, et al. Regulatory effects of simvastatin and apoJ on APP processing and amyloid-β clearance in blood-brain barrier endothelial cells. Biochim et Biophys Acta BBA Mol Cell Biol Lipids. 2018;1863(1):40–60.
20.
go back to reference Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci. 2019;13:164.CrossRefPubMedPubMedCentral Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci. 2019;13:164.CrossRefPubMedPubMedCentral
21.
go back to reference Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRefPubMedPubMedCentral Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRefPubMedPubMedCentral
22.
go back to reference Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.CrossRefPubMed Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.CrossRefPubMed
23.
go back to reference Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, Mondo E, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci. 2019;22(7):1075–88.CrossRefPubMedPubMedCentral Gunner G, Cheadle L, Johnson KM, Ayata P, Badimon A, Mondo E, et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat Neurosci. 2019;22(7):1075–88.CrossRefPubMedPubMedCentral
24.
go back to reference Bolos M, Llorens-Martin M, Perea JR, Jurado-Arjona J, Rabano A, Hernandez F, et al. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener. 2017;12(1):59.CrossRefPubMedPubMedCentral Bolos M, Llorens-Martin M, Perea JR, Jurado-Arjona J, Rabano A, Hernandez F, et al. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol Neurodegener. 2017;12(1):59.CrossRefPubMedPubMedCentral
25.
go back to reference Bolos M, Llorens-Martin M, Jurado-Arjona J, Hernandez F, Rabano A, Avila J. Direct evidence of internalization of Tau by microglia in vitro and in vivo. J Alzheimers Dis. 2016;50(1):77–87.CrossRefPubMed Bolos M, Llorens-Martin M, Jurado-Arjona J, Hernandez F, Rabano A, Avila J. Direct evidence of internalization of Tau by microglia in vitro and in vivo. J Alzheimers Dis. 2016;50(1):77–87.CrossRefPubMed
26.
go back to reference Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010;68(10):903–12.CrossRefPubMedPubMedCentral Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry. 2010;68(10):903–12.CrossRefPubMedPubMedCentral
27.
go back to reference Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med. 2020;12(574):eaax3519.CrossRefPubMedPubMedCentral Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med. 2020;12(574):eaax3519.CrossRefPubMedPubMedCentral
28.
go back to reference Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med. 2019;217(1): e20190314.CrossRefPubMedCentral Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J Exp Med. 2019;217(1): e20190314.CrossRefPubMedCentral
29.
go back to reference Liang T, Zhang Y, Wu S, Chen Q, Wang L. The role of NLRP3 inflammasome in Alzheimer’s disease and potential therapeutic targets. Front Pharmacol. 2022;13: 845185.CrossRefPubMedPubMedCentral Liang T, Zhang Y, Wu S, Chen Q, Wang L. The role of NLRP3 inflammasome in Alzheimer’s disease and potential therapeutic targets. Front Pharmacol. 2022;13: 845185.CrossRefPubMedPubMedCentral
30.
go back to reference Meda L, Bernasconi S, Bonaiuto C, Sozzani S, Zhou D, Otvos L Jr, et al. Beta-amyloid (25–35) peptide and IFN-gamma synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells. J Immunol (Baltimore, Md: 1950). 1996;157(3):1213–8.CrossRef Meda L, Bernasconi S, Bonaiuto C, Sozzani S, Zhou D, Otvos L Jr, et al. Beta-amyloid (25–35) peptide and IFN-gamma synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells. J Immunol (Baltimore, Md: 1950). 1996;157(3):1213–8.CrossRef
31.
go back to reference Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain J Neurol. 2017;140(3):792–803. Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain J Neurol. 2017;140(3):792–803.
32.
go back to reference Hamelin L, Lagarde J, Dorothée G, Potier MC, Corlier F, Kuhnast B, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain J Neurol. 2018;141(6):1855–70.CrossRef Hamelin L, Lagarde J, Dorothée G, Potier MC, Corlier F, Kuhnast B, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. Brain J Neurol. 2018;141(6):1855–70.CrossRef
33.
go back to reference Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Peran P, et al. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer’s disease: an update. Eur J Neurosci. 2022;55(5):1322–43.CrossRefPubMed Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Peran P, et al. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer’s disease: an update. Eur J Neurosci. 2022;55(5):1322–43.CrossRefPubMed
34.
go back to reference Lleó A, Alcolea D, Martínez-Lage P, Scheltens P, Parnetti L, Poirier J, et al. Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer’s disease continuum in the BIOMARKAPD study. Alzheimers Dement. 2019;15(6):742–53.CrossRefPubMed Lleó A, Alcolea D, Martínez-Lage P, Scheltens P, Parnetti L, Poirier J, et al. Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer’s disease continuum in the BIOMARKAPD study. Alzheimers Dement. 2019;15(6):742–53.CrossRefPubMed
35.
go back to reference Fladby T, Palhaugen L, Selnes P, Waterloo K, Brathen G, Hessen E, et al. Detecting At-risk Alzheimer’s disease cases. J Alzheimer’s Dis JAD. 2017;60(1):97–105.CrossRefPubMed Fladby T, Palhaugen L, Selnes P, Waterloo K, Brathen G, Hessen E, et al. Detecting At-risk Alzheimer’s disease cases. J Alzheimer’s Dis JAD. 2017;60(1):97–105.CrossRefPubMed
36.
go back to reference Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dementia. 2014;10(6):844–52.CrossRefPubMed Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chetelat G, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dementia. 2014;10(6):844–52.CrossRefPubMed
37.
go back to reference Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):270–9.CrossRefPubMed Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dementia. 2011;7(3):270–9.CrossRefPubMed
38.
go back to reference Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimers Dement. 2008;4(2):96–109.CrossRefPubMedPubMedCentral Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimers Dement. 2008;4(2):96–109.CrossRefPubMedPubMedCentral
39.
go back to reference Kirsebom B-E, Espenes R, Hessen E, Waterloo K, Johnsen SH, Gundersen E, et al. Demographically adjusted CERAD wordlist test norms in a Norwegian sample from 40 to 80 years. Clin Neuropsychol. 2019;33(sup1):27–39.CrossRefPubMed Kirsebom B-E, Espenes R, Hessen E, Waterloo K, Johnsen SH, Gundersen E, et al. Demographically adjusted CERAD wordlist test norms in a Norwegian sample from 40 to 80 years. Clin Neuropsychol. 2019;33(sup1):27–39.CrossRefPubMed
40.
go back to reference Heaton RK, Miller SW, Taylor MJ, Grant I. Revised comprehensive norms for an expanded Halstead-Reitan battery: demographically adjusted neuropsychological norms for African American and Caucasian Adults: Professional Manual. Psychological Assessment Resources; 2004. Heaton RK, Miller SW, Taylor MJ, Grant I. Revised comprehensive norms for an expanded Halstead-Reitan battery: demographically adjusted neuropsychological norms for African American and Caucasian Adults: Professional Manual. Psychological Assessment Resources; 2004.
41.
go back to reference Benton A, Hamsher K. Controlled oral word association. Iowa: Multilingual aphasia examination AJA Associates; 1989. Benton A, Hamsher K. Controlled oral word association. Iowa: Multilingual aphasia examination AJA Associates; 1989.
42.
go back to reference Warrington EK, James M. The visual object and space perception battery. Bury St Edmunds: Thames Valley Test Company; 1991. Warrington EK, James M. The visual object and space perception battery. Bury St Edmunds: Thames Valley Test Company; 1991.
43.
go back to reference Suárez-Calvet M, Capell A, Araque Caballero MÁ, Morenas-Rodríguez E, Fellerer K, Franzmeier N, et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM 2, neurodegeneration and cognitive decline. EMBO Mol Med. 2018;10(12): e9712.CrossRefPubMedPubMedCentral Suárez-Calvet M, Capell A, Araque Caballero MÁ, Morenas-Rodríguez E, Fellerer K, Franzmeier N, et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM 2, neurodegeneration and cognitive decline. EMBO Mol Med. 2018;10(12): e9712.CrossRefPubMedPubMedCentral
44.
go back to reference Siafarikas N, Kirsebom B-E, Srivastava DP, Eriksson CM, Auning E, Hessen E, et al. Cerebrospinal fluid markers for synaptic function and Alzheimer type changes in late life depression. Sci Rep. 2021;11(1):1–9.CrossRef Siafarikas N, Kirsebom B-E, Srivastava DP, Eriksson CM, Auning E, Hessen E, et al. Cerebrospinal fluid markers for synaptic function and Alzheimer type changes in late life depression. Sci Rep. 2021;11(1):1–9.CrossRef
45.
go back to reference R. A language and environment for statistical computing. R Foundation for Statistical Computing; 2022. R. A language and environment for statistical computing. R Foundation for Statistical Computing; 2022.
47.
go back to reference Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J Open Source Softw. 2018;3:772.CrossRef Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J Open Source Softw. 2018;3:772.CrossRef
49.
go back to reference Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer; 2016.CrossRef Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer; 2016.CrossRef
50.
go back to reference Patel T, Carnwath TP, Wang X, Allen M, Lincoln SJ, Lewis-Tuffin LJ, et al. Transcriptional landscape of human microglia implicates age, sex, and APOE-related immunometabolic pathway perturbations. Aging Cell. 2022;21(5): e13606.CrossRefPubMedPubMedCentral Patel T, Carnwath TP, Wang X, Allen M, Lincoln SJ, Lewis-Tuffin LJ, et al. Transcriptional landscape of human microglia implicates age, sex, and APOE-related immunometabolic pathway perturbations. Aging Cell. 2022;21(5): e13606.CrossRefPubMedPubMedCentral
51.
go back to reference Mattsson N, Tabatabaei S, Johansson P, Hansson O, Andreasson U, Mansson JE, et al. Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. NeuroMol Med. 2011;13(2):151–9.CrossRef Mattsson N, Tabatabaei S, Johansson P, Hansson O, Andreasson U, Mansson JE, et al. Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. NeuroMol Med. 2011;13(2):151–9.CrossRef
52.
go back to reference Visser PJ, Reus LM, Gobom J, Jansen I, Dicks E, Van der Lee SJ, et al. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease. Mol Neurodegener. 2022;17(1):27.CrossRefPubMedPubMedCentral Visser PJ, Reus LM, Gobom J, Jansen I, Dicks E, Van der Lee SJ, et al. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer’s disease. Mol Neurodegener. 2022;17(1):27.CrossRefPubMedPubMedCentral
53.
go back to reference Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener. 2019;14(1):20.CrossRefPubMedPubMedCentral Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener. 2019;14(1):20.CrossRefPubMedPubMedCentral
54.
go back to reference Gao S, Casey AE, Sargeant TJ, Mäkinen V-P. Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain J Neurol. 2018;141(9):2711–20.CrossRef Gao S, Casey AE, Sargeant TJ, Mäkinen V-P. Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain J Neurol. 2018;141(9):2711–20.CrossRef
55.
go back to reference Liu Z, Condello C, Schain A, Harb R, Grutzendler J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci. 2010;30(50):17091–101.CrossRefPubMedPubMedCentral Liu Z, Condello C, Schain A, Harb R, Grutzendler J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci. 2010;30(50):17091–101.CrossRefPubMedPubMedCentral
56.
go back to reference Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31(45):16241–50.CrossRefPubMedPubMedCentral Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31(45):16241–50.CrossRefPubMedPubMedCentral
57.
go back to reference Merino JJ, Muneton-Gomez V, Alvarez MI, Toledano-Diaz A. Effects of CX3CR1 and fractalkine chemokines in amyloid beta clearance and p-Tau accumulation in Alzheimer’s disease (AD) rodent models: is fractalkine a systemic biomarker for AD? Curr Alzheimer Res. 2016;13(4):403–12.CrossRefPubMed Merino JJ, Muneton-Gomez V, Alvarez MI, Toledano-Diaz A. Effects of CX3CR1 and fractalkine chemokines in amyloid beta clearance and p-Tau accumulation in Alzheimer’s disease (AD) rodent models: is fractalkine a systemic biomarker for AD? Curr Alzheimer Res. 2016;13(4):403–12.CrossRefPubMed
58.
go back to reference Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9(7):917–24.CrossRefPubMed Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9(7):917–24.CrossRefPubMed
59.
60.
go back to reference Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain J Neurol. 2015;138(Pt 6):1738–55.CrossRef Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain J Neurol. 2015;138(Pt 6):1738–55.CrossRef
61.
go back to reference Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27(9):1592–9.CrossRefPubMed Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, et al. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 2021;27(9):1592–9.CrossRefPubMed
62.
go back to reference Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28(33):8354–60.CrossRefPubMedPubMedCentral Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28(33):8354–60.CrossRefPubMedPubMedCentral
63.
go back to reference Frigerio CS, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I, et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 2019;27(4):1293-306.e6.CrossRefPubMedCentral Frigerio CS, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I, et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 2019;27(4):1293-306.e6.CrossRefPubMedCentral
65.
go back to reference Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med. 2016;8(5):466–76.CrossRefPubMedPubMedCentral Suarez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med. 2016;8(5):466–76.CrossRefPubMedPubMedCentral
66.
go back to reference Ma L-Z, Tan L, Bi Y-L, Shen X-N, Xu W, Ma Y-H, et al. Dynamic changes of CSF sTREM2 in preclinical Alzheimer’s disease: the CABLE study. Mol Neurodegener. 2020;15:1–9.CrossRef Ma L-Z, Tan L, Bi Y-L, Shen X-N, Xu W, Ma Y-H, et al. Dynamic changes of CSF sTREM2 in preclinical Alzheimer’s disease: the CABLE study. Mol Neurodegener. 2020;15:1–9.CrossRef
67.
go back to reference Delvenne A, Gobom J, Tijms B, Bos I, Reus LM, Dobricic V, et al. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer’s disease pathophysiology. Alzheimer’s Dementia. 2022;19:807–20.CrossRef Delvenne A, Gobom J, Tijms B, Bos I, Reus LM, Dobricic V, et al. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer’s disease pathophysiology. Alzheimer’s Dementia. 2022;19:807–20.CrossRef
68.
go back to reference Stancu IC, Lodder C, Botella Lucena P, Vanherle S, Gutiérrez de Ravé M, Terwel D, et al. The NLRP3 inflammasome modulates tau pathology and neurodegeneration in a tauopathy model. Glia. 2022;70(6):1117–32.CrossRefPubMedPubMedCentral Stancu IC, Lodder C, Botella Lucena P, Vanherle S, Gutiérrez de Ravé M, Terwel D, et al. The NLRP3 inflammasome modulates tau pathology and neurodegeneration in a tauopathy model. Glia. 2022;70(6):1117–32.CrossRefPubMedPubMedCentral
69.
go back to reference Emmerson JT, Malcolm JC, Do Carmo S, Nguyen P, Breuillaud L, Martinez-Trujillo JC, et al. Neuronal loss and inflammation preceding fibrillary tau pathology in a rat model with early human-like tauopathy. Neurobiol Dis. 2023;187: 106317.CrossRefPubMed Emmerson JT, Malcolm JC, Do Carmo S, Nguyen P, Breuillaud L, Martinez-Trujillo JC, et al. Neuronal loss and inflammation preceding fibrillary tau pathology in a rat model with early human-like tauopathy. Neurobiol Dis. 2023;187: 106317.CrossRefPubMed
70.
go back to reference Raha AA, Henderson JW, Stott SR, Vuono R, Foscarin S, Friedland RP, et al. Neuroprotective effect of TREM-2 in aging and Alzheimer’s disease model. J Alzheimer’s Dis JAD. 2017;55(1):199–217.CrossRefPubMed Raha AA, Henderson JW, Stott SR, Vuono R, Foscarin S, Friedland RP, et al. Neuroprotective effect of TREM-2 in aging and Alzheimer’s disease model. J Alzheimer’s Dis JAD. 2017;55(1):199–217.CrossRefPubMed
71.
go back to reference Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC, Zhou JS, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196–206.CrossRefPubMed Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC, Zhou JS, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196–206.CrossRefPubMed
72.
go back to reference Leyns CE, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci. 2017;114(43):11524–9.CrossRefPubMedPubMedCentral Leyns CE, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci. 2017;114(43):11524–9.CrossRefPubMedPubMedCentral
73.
go back to reference Sutinen EM, Pirttila T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-beta production in human neuron-like cells. J Neuroinflammation. 2012;9:199.CrossRefPubMedPubMedCentral Sutinen EM, Pirttila T, Anderson G, Salminen A, Ojala JO. Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-beta production in human neuron-like cells. J Neuroinflammation. 2012;9:199.CrossRefPubMedPubMedCentral
74.
go back to reference Villarejo-Galende A, González-Sánchez M, Blanco-Palmero VA, Llamas-Velasco S, Benito-León J. Non-steroidal anti-inflammatory drugs as candidates for the prevention or treatment of Alzheimer’s disease: do they still have a role? Curr Alzheimer Res. 2020;17(11):1013–22.CrossRefPubMed Villarejo-Galende A, González-Sánchez M, Blanco-Palmero VA, Llamas-Velasco S, Benito-León J. Non-steroidal anti-inflammatory drugs as candidates for the prevention or treatment of Alzheimer’s disease: do they still have a role? Curr Alzheimer Res. 2020;17(11):1013–22.CrossRefPubMed
75.
go back to reference Howard R, Zubko O, Bradley R, Harper E, Pank L, O’brien J, et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2020;77(2):164–74.CrossRefPubMed Howard R, Zubko O, Bradley R, Harper E, Pank L, O’brien J, et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2020;77(2):164–74.CrossRefPubMed
76.
go back to reference Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. Front Neuroendocrinol. 2019;52:156–64.CrossRefPubMed Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. Front Neuroendocrinol. 2019;52:156–64.CrossRefPubMed
77.
go back to reference Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: a focus on ontogeny and intrinsic factors. Glia. 2020;68(6):1085–99.CrossRefPubMed Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the developing brain: a focus on ontogeny and intrinsic factors. Glia. 2020;68(6):1085–99.CrossRefPubMed
78.
go back to reference Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A, et al. Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann Neurosci. 2021;28(3–4):191–200.CrossRefPubMed Jain M, Singh MK, Shyam H, Mishra A, Kumar S, Kumar A, et al. Role of JAK/STAT in the neuroinflammation and its association with neurological disorders. Ann Neurosci. 2021;28(3–4):191–200.CrossRefPubMed
79.
go back to reference Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):1–9. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):1–9.
80.
go back to reference Buchanan H, Mackay M, Palmer K, Tothová K, Katsur M, Platt B, et al. Synaptic loss, ER stress and neuro-inflammation emerge late in the lateral temporal cortex and associate with progressive tau pathology in Alzheimer’s disease. Mol Neurobiol. 2020;57:3258–72.CrossRefPubMedPubMedCentral Buchanan H, Mackay M, Palmer K, Tothová K, Katsur M, Platt B, et al. Synaptic loss, ER stress and neuro-inflammation emerge late in the lateral temporal cortex and associate with progressive tau pathology in Alzheimer’s disease. Mol Neurobiol. 2020;57:3258–72.CrossRefPubMedPubMedCentral
Metadata
Title
Longitudinal cerebrospinal fluid measurements show glial hypo- and hyperactivation in predementia Alzheimer’s disease
Authors
Kaja Nordengen
Bjørn-Eivind Kirsebom
Grit Richter
Lene Pålhaugen
Berglind Gísladóttir
Nikias Siafarikas
Arne Nakling
Arvid Rongve
Geir Bråthen
Gøril Rolfseng Grøntvedt
Fernando Gonzalez
Knut Waterloo
Kulbhushan Sharma
Thomas Karikari
Eleonora M. Vromen
Betty M. Tijms
Pieter J. Visser
Per Selnes
Milicia G. Kramberger
Bengt Winblad
Kaj Blennow
Tormod Fladby
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02973-w

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue