Skip to main content
Top
Published in: Surgery Today 11/2019

01-11-2019 | Original Article

Long-term outcomes of patch tracheoplasty using collagenous tissue membranes (biosheets) produced by in-body tissue architecture in a beagle model

Authors: Satoshi Umeda, Yasuhide Nakayama, Takeshi Terazawa, Ryosuke Iwai, Shohei Hiwatashi, Kengo Nakahata, Yuichi Takama, Hiroomi Okuyama

Published in: Surgery Today | Issue 11/2019

Login to get access

Abstract

Purpose

Although various artificial tracheas have been developed, none have proven satisfactory for clinical use. In-body tissue architecture (IBTA) has enabled us to produce collagenous tissues with a wide range of shapes and sizes to meet the needs of individual recipients. In the present study, we investigated the long-term outcomes of patch tracheoplasty using an IBTA-induced collagenous tissue membrane (“biosheet”) in a beagle model.

Methods

Nine adult female beagles were used. Biosheets were prepared by embedding cylindrical molds assembled with a silicone rod and a slitting pipe into dorsal subcutaneous pouches for 2 months. The sheets were then implanted by patch tracheoplasty. An endoscopic evaluation was performed after 1, 3, or 12 months. The implanted biosheets were harvested for a histological evaluation at the same time points.

Results

All animals survived the study. At 1 month after tracheoplasty, the anastomotic parts and internal surface of the biosheets were smooth with ciliated columnar epithelium, which regenerated into the internal surface of the biosheet. The chronological spread of chondrocytes into the biosheet was observed at 3 and 12 months.

Conclusions

Biosheets showed excellent performance as a scaffold for trachea regeneration with complete luminal epithelium and partial chondrocytes in a 1-year beagle implantation model of patch tracheoplasty.
Literature
1.
go back to reference Ott LM, Vu CH, Farris AL, Fox KD, Galbraith RA, Weiss ML, et al. Functional reconstruction of tracheal defects by protein-loaded, cell-seeded, fibrous constructs in rabbits. Tissue Eng Part A. 2015;21:2390–403.CrossRef Ott LM, Vu CH, Farris AL, Fox KD, Galbraith RA, Weiss ML, et al. Functional reconstruction of tracheal defects by protein-loaded, cell-seeded, fibrous constructs in rabbits. Tissue Eng Part A. 2015;21:2390–403.CrossRef
2.
go back to reference Nakayama Y, Ishibashi-Ueda H, Takamizawa K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transpl. 2004;13:439–49.CrossRef Nakayama Y, Ishibashi-Ueda H, Takamizawa K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transpl. 2004;13:439–49.CrossRef
3.
go back to reference Yamanami M, Ishibashi-Ueda H, Yamamoto A, Iida H, Watanabe T, Kanda K, et al. Transplantation study of small-caliber ‘‘biotube’’ vascular grafts in a rat model. J Artif Organs. 2013;16:59–655.CrossRef Yamanami M, Ishibashi-Ueda H, Yamamoto A, Iida H, Watanabe T, Kanda K, et al. Transplantation study of small-caliber ‘‘biotube’’ vascular grafts in a rat model. J Artif Organs. 2013;16:59–655.CrossRef
4.
go back to reference Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y. Autologous small-caliber “biotube” vascular grafts with argatroban loading: a histomorphological examination after transplantation to rabbits. J Biomed Mater Res B Appl Biomater. 2010;92:236–42.CrossRef Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y. Autologous small-caliber “biotube” vascular grafts with argatroban loading: a histomorphological examination after transplantation to rabbits. J Biomed Mater Res B Appl Biomater. 2010;92:236–42.CrossRef
5.
go back to reference Okuyama H, Umeda S, Takama Y, Terasawa T, Nakayama Y. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane. J Pediatr Surg. 2017;53:223–6.CrossRef Okuyama H, Umeda S, Takama Y, Terasawa T, Nakayama Y. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane. J Pediatr Surg. 2017;53:223–6.CrossRef
6.
go back to reference Satake R, Komura M, Komura H, Kodaka T, Terawaki K, Ikebukuro K, et al. Patch tracheoplasty in body tissue engineering using collagenous connective tissue membranes (biosheets). J Pediatr Surg. 2013;51:244–8.CrossRef Satake R, Komura M, Komura H, Kodaka T, Terawaki K, Ikebukuro K, et al. Patch tracheoplasty in body tissue engineering using collagenous connective tissue membranes (biosheets). J Pediatr Surg. 2013;51:244–8.CrossRef
7.
go back to reference Jungebluth P, Haag JC, Sjöqvist S, Gustafsson Y, Beltrán Rodríguez A, Del Gaudio C, et al. Tracheal tissue engineering in rats. Nat Protoc. 2014;9:2164–79.CrossRef Jungebluth P, Haag JC, Sjöqvist S, Gustafsson Y, Beltrán Rodríguez A, Del Gaudio C, et al. Tracheal tissue engineering in rats. Nat Protoc. 2014;9:2164–79.CrossRef
8.
go back to reference Delaere PR, Raemdonck DV. The trachea: the first tissue-engineered organ? J Thorac Cardiovasc Surg. 2014;147:1128–32.CrossRef Delaere PR, Raemdonck DV. The trachea: the first tissue-engineered organ? J Thorac Cardiovasc Surg. 2014;147:1128–32.CrossRef
9.
go back to reference Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg. 2002;73:1995–2004.CrossRef Grillo HC. Tracheal replacement: a critical review. Ann Thorac Surg. 2002;73:1995–2004.CrossRef
10.
go back to reference Tsugawa C, Nishijima E, Muraji T, Satoh S, Takamizawa S, Yamaguchi M, et al. Tracheoplasty for long segment congenital tracheal stenosis: analysis of 29 patients over two decades. J Pediatr Surg. 2003;38:1703–6.CrossRef Tsugawa C, Nishijima E, Muraji T, Satoh S, Takamizawa S, Yamaguchi M, et al. Tracheoplasty for long segment congenital tracheal stenosis: analysis of 29 patients over two decades. J Pediatr Surg. 2003;38:1703–6.CrossRef
11.
go back to reference Oue T, Kamata S, Usui N, Okuyama H, Nose K, Okada A. Histopathologic changes after tracheobronchial reconstruction with costal cartilage graft for congenital tracheal stenosis. J Pediatr Surg. 2001;36:329–33.CrossRef Oue T, Kamata S, Usui N, Okuyama H, Nose K, Okada A. Histopathologic changes after tracheobronchial reconstruction with costal cartilage graft for congenital tracheal stenosis. J Pediatr Surg. 2001;36:329–33.CrossRef
12.
go back to reference Yazdanbakhsh AP, van Rijssen LB, Koolbergen DR, König A, de Mol BA, Hazekamp MG. Long-term follow-up of tracheoplasty using autologous pericardial patch and strips of costal cartilage. Eur J Cardiothorac Surg. 2015;47:146–52.CrossRef Yazdanbakhsh AP, van Rijssen LB, Koolbergen DR, König A, de Mol BA, Hazekamp MG. Long-term follow-up of tracheoplasty using autologous pericardial patch and strips of costal cartilage. Eur J Cardiothorac Surg. 2015;47:146–52.CrossRef
13.
go back to reference Fanous N, Husain SA, Ruzmetov M, Rodefeld MD, Turrentine MW, Brown JW. Anterior pericardial tracheoplasty for long-segment tracheal stenosis: long-term outcomes. J Thorac Cardiovasc Surg. 2010;139:18–23.CrossRef Fanous N, Husain SA, Ruzmetov M, Rodefeld MD, Turrentine MW, Brown JW. Anterior pericardial tracheoplasty for long-segment tracheal stenosis: long-term outcomes. J Thorac Cardiovasc Surg. 2010;139:18–23.CrossRef
14.
go back to reference Hayashida K, Kanda K, Yaku H, Ando J, Nakayama Y. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model. J Thorac Cardiovasc Surg. 2007;134:152–9.CrossRef Hayashida K, Kanda K, Yaku H, Ando J, Nakayama Y. Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model. J Thorac Cardiovasc Surg. 2007;134:152–9.CrossRef
15.
go back to reference Takiyama N, Mizuno T, Iwai R, Uechi M, Nakayama Y. In-body tissue-engineered collagenous connective tissue membranes (BIOSHEETs) for potential corneal stromal substitution. J Tissue Eng Regen Med. 2016;10:E518–26.CrossRef Takiyama N, Mizuno T, Iwai R, Uechi M, Nakayama Y. In-body tissue-engineered collagenous connective tissue membranes (BIOSHEETs) for potential corneal stromal substitution. J Tissue Eng Regen Med. 2016;10:E518–26.CrossRef
16.
go back to reference Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, et al. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010;122:S100–6.CrossRef Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, et al. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010;122:S100–6.CrossRef
Metadata
Title
Long-term outcomes of patch tracheoplasty using collagenous tissue membranes (biosheets) produced by in-body tissue architecture in a beagle model
Authors
Satoshi Umeda
Yasuhide Nakayama
Takeshi Terazawa
Ryosuke Iwai
Shohei Hiwatashi
Kengo Nakahata
Yuichi Takama
Hiroomi Okuyama
Publication date
01-11-2019
Publisher
Springer Singapore
Published in
Surgery Today / Issue 11/2019
Print ISSN: 0941-1291
Electronic ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-019-01818-5

Other articles of this Issue 11/2019

Surgery Today 11/2019 Go to the issue