Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2008

Open Access 01-12-2008 | Research article

Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke

Authors: Anupama Reddy, Honghui Wang, Hua Yu, Tiberius O Bonates, Vimla Gulabani, Joseph Azok, Gerard Hoehn, Peter L Hammer, Alison E Baird, King C Li

Published in: BMC Medical Informatics and Decision Making | Issue 1/2008

Login to get access

Abstract

Background

Strokes are a leading cause of morbidity and the first cause of adult disability in the United States. Currently, no biomarkers are being used clinically to diagnose acute ischemic stroke. A diagnostic test using a blood sample from a patient would potentially be beneficial in treating the disease.

Results

A classification approach is described for differentiating between proteomic samples of stroke patients and controls, and a second novel predictive model is developed for predicting the severity of stroke as measured by the National Institutes of Health Stroke Scale (NIHSS). The models were constructed by applying the Logical Analysis of Data (LAD) methodology to the mass peak profiles of 48 stroke patients and 32 controls. The classification model was shown to have an accuracy of 75% when tested on an independent validation set of 35 stroke patients and 25 controls, while the predictive model exhibited superior performance when compared to alternative algorithms. In spite of their high accuracy, both models are extremely simple and were developed using a common set consisting of only 3 peaks.

Conclusion

We have successfully identified 3 biomarkers that can detect ischemic stroke with an accuracy of 75%. The performance of the classification model on the validation set and on cross-validation does not deteriorate significantly when compared to that on the training set, indicating the robustness of the model. As in the case of the LAD classification model, the results of the predictive model validate the function constructed on our support-set for approximating the severity scores of stroke patients. The correlation and root mean absolute error of the LAD predictive model are consistently superior to those of the other algorithms used (Support vector machines, C4.5 decision trees, Logistic regression and Multilayer perceptron).
Appendix
Available only for authorised users
Literature
1.
go back to reference Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002, 359: 572-577. 10.1016/S0140-6736(02)07746-2.CrossRefPubMed Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA: Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002, 359: 572-577. 10.1016/S0140-6736(02)07746-2.CrossRefPubMed
2.
go back to reference Alexe G, Alexe S, Axelrod DE, Bonates TO, Lozina I, Reiss M, Hammer PL: Ovarian cancer detection by logical analysis of proteomic data. Proteomics. 2004, 4: 766-83. 10.1002/pmic.200300574.CrossRefPubMed Alexe G, Alexe S, Axelrod DE, Bonates TO, Lozina I, Reiss M, Hammer PL: Ovarian cancer detection by logical analysis of proteomic data. Proteomics. 2004, 4: 766-83. 10.1002/pmic.200300574.CrossRefPubMed
3.
go back to reference Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW: Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem. 2002, 48: 1296-1304.PubMed Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW: Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem. 2002, 48: 1296-1304.PubMed
4.
go back to reference Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002, 62: 3609-3614.PubMed Adam BL, Qu Y, Davis JW, Ward MD, Clements MA, Cazares LH, Semmes OJ, Schellhammer PF, Yasui Y, Feng Z, Wright GL: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 2002, 62: 3609-3614.PubMed
5.
go back to reference Allard L, Lescuyer P, Burgess J, Leung KY, Ward M, Walter N, Burkhard PR, Corthals G, Hochstrasser DF, Sanchez JC: ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics. 2004, 4: 2242-2251. 10.1002/pmic.200300809.CrossRefPubMed Allard L, Lescuyer P, Burgess J, Leung KY, Ward M, Walter N, Burkhard PR, Corthals G, Hochstrasser DF, Sanchez JC: ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics. 2004, 4: 2242-2251. 10.1002/pmic.200300809.CrossRefPubMed
6.
go back to reference Lopez MF, Mikulskis A, Kuzdzal S, Bennett DA, Nelly J, Golenko E, DiCesare J, Denoyer E, Patton WF, Ediger R, Sapp L, Ziegert T, Lynch C, Kramer S, Whiteley GR, Wall MR, Mannion DP, Cioppa GD, Rakitan JS, Wolfe GM: High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin Chem. 2004, 51: 1946-1954. 10.1373/clinchem.2005.053090.CrossRef Lopez MF, Mikulskis A, Kuzdzal S, Bennett DA, Nelly J, Golenko E, DiCesare J, Denoyer E, Patton WF, Ediger R, Sapp L, Ziegert T, Lynch C, Kramer S, Whiteley GR, Wall MR, Mannion DP, Cioppa GD, Rakitan JS, Wolfe GM: High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin Chem. 2004, 51: 1946-1954. 10.1373/clinchem.2005.053090.CrossRef
7.
go back to reference Crama Y, Hammer PL, Ibaraki T: Cause-effect relationships and partially defined Boolean functions. Ann Operations Res. 1998, 16: 299-326. 10.1007/BF02283750.CrossRef Crama Y, Hammer PL, Ibaraki T: Cause-effect relationships and partially defined Boolean functions. Ann Operations Res. 1998, 16: 299-326. 10.1007/BF02283750.CrossRef
8.
go back to reference Boros E, Hammer PL, Ibaraki T, Kogan A: A logical analysis of numerical data. Math Programming. 1997, 79: 163-190. Boros E, Hammer PL, Ibaraki T, Kogan A: A logical analysis of numerical data. Math Programming. 1997, 79: 163-190.
9.
go back to reference Boros E, Hammer PL, Ibaraki T, Kogan A, Mayoraz E, Muchnik I: An Implementation of Logical Analysis of Data. IEEE Trans on Knowl and Data Eng. 2000, 12: 292-306. 10.1109/69.842268.CrossRef Boros E, Hammer PL, Ibaraki T, Kogan A, Mayoraz E, Muchnik I: An Implementation of Logical Analysis of Data. IEEE Trans on Knowl and Data Eng. 2000, 12: 292-306. 10.1109/69.842268.CrossRef
10.
go back to reference Lauer MS, Alexe S, Snader CEP, Blackstone EH, Ishwaran H, Hammer PL: Use of the logical analysis of data method for assessing long-term mortality risk after exercise electrocardiography. Circulation. 2002, 106: 685-690.CrossRefPubMed Lauer MS, Alexe S, Snader CEP, Blackstone EH, Ishwaran H, Hammer PL: Use of the logical analysis of data method for assessing long-term mortality risk after exercise electrocardiography. Circulation. 2002, 106: 685-690.CrossRefPubMed
11.
go back to reference Alexe S, Blackstone EH, Hammer PL, Ishwaran H, Lauer MS, Snader CEP: Coronary risk prediction by Logical Analysis of Data. Ann Operations Res. 2003, 119: 15-42. 10.1023/A:1022970120229.CrossRef Alexe S, Blackstone EH, Hammer PL, Ishwaran H, Lauer MS, Snader CEP: Coronary risk prediction by Logical Analysis of Data. Ann Operations Res. 2003, 119: 15-42. 10.1023/A:1022970120229.CrossRef
12.
go back to reference Abramson SD, Alexe G, Hammer PL, Kohn J: A computational approach to predicting cell growth on polymeric biomaterials. J Biomed Mater Res A. 2005, 73: 116-124.CrossRefPubMed Abramson SD, Alexe G, Hammer PL, Kohn J: A computational approach to predicting cell growth on polymeric biomaterials. J Biomed Mater Res A. 2005, 73: 116-124.CrossRefPubMed
13.
go back to reference Alexe G, Alexe S, Axelrod DE, Bonates TO, Lozina I, Reiss M, Hammer PL: Breast cancer prognosis by combinatorial analysis of gene expression data. Breast Cancer Res. 2006, 8: R41-10.1186/bcr1512.CrossRefPubMedPubMedCentral Alexe G, Alexe S, Axelrod DE, Bonates TO, Lozina I, Reiss M, Hammer PL: Breast cancer prognosis by combinatorial analysis of gene expression data. Breast Cancer Res. 2006, 8: R41-10.1186/bcr1512.CrossRefPubMedPubMedCentral
14.
go back to reference Hammer PL, Bonates TO: Logical Analysis of Data: From Combinatorial Optimization to Medical Applications. Ann Operations Res. 2006, 148: 203-225. 10.1007/s10479-006-0075-y.CrossRef Hammer PL, Bonates TO: Logical Analysis of Data: From Combinatorial Optimization to Medical Applications. Ann Operations Res. 2006, 148: 203-225. 10.1007/s10479-006-0075-y.CrossRef
15.
go back to reference Baird A, Dambrosia J, Janket S, Eichbaum Q, Chaves C, Silver B, Barber P, Parsons M, Darby D, Davis S: A three-item scale for the early prediction of stroke recovery. Lancet. 2001, 357: 2095-2099. 10.1016/S0140-6736(00)05183-7.CrossRefPubMed Baird A, Dambrosia J, Janket S, Eichbaum Q, Chaves C, Silver B, Barber P, Parsons M, Darby D, Davis S: A three-item scale for the early prediction of stroke recovery. Lancet. 2001, 357: 2095-2099. 10.1016/S0140-6736(00)05183-7.CrossRefPubMed
17.
go back to reference Ian HW, Frank E: Data Mining: Practical machine learning tools and techniques. 2005, Morgan Kaufmann, San Francisco, 2 Ian HW, Frank E: Data Mining: Practical machine learning tools and techniques. 2005, Morgan Kaufmann, San Francisco, 2
18.
go back to reference Hammer PL, Kogan A, Simeone B, Szedmák S: Pareto-optimal patterns in logical analysis of data. Discrete Appl Math. 2004, 144: 79-102. 10.1016/j.dam.2003.08.013.CrossRef Hammer PL, Kogan A, Simeone B, Szedmák S: Pareto-optimal patterns in logical analysis of data. Discrete Appl Math. 2004, 144: 79-102. 10.1016/j.dam.2003.08.013.CrossRef
19.
go back to reference Alexe S, Hammer PL: Accelerated algorithm for pattern detection in logical analysis of data. Discrete Appl Math. 2006, 154: 1050-1063. 10.1016/j.dam.2005.03.032.CrossRef Alexe S, Hammer PL: Accelerated algorithm for pattern detection in logical analysis of data. Discrete Appl Math. 2006, 154: 1050-1063. 10.1016/j.dam.2005.03.032.CrossRef
20.
go back to reference Alexe G, Hammer PL: Spanned patterns for the logical analysis of data. Discrete Appl Math. 2006, 154: 1039-1049. 10.1016/j.dam.2005.03.031.CrossRef Alexe G, Hammer PL: Spanned patterns for the logical analysis of data. Discrete Appl Math. 2006, 154: 1039-1049. 10.1016/j.dam.2005.03.031.CrossRef
21.
go back to reference Bonates TO, Hammer PL, Kogan A: Maximum patterns in datasets. Discrete Appl Math. 2008, 156: 846-861. 10.1016/j.dam.2007.06.004.CrossRef Bonates TO, Hammer PL, Kogan A: Maximum patterns in datasets. Discrete Appl Math. 2008, 156: 846-861. 10.1016/j.dam.2007.06.004.CrossRef
Metadata
Title
Logical Analysis of Data (LAD) model for the early diagnosis of acute ischemic stroke
Authors
Anupama Reddy
Honghui Wang
Hua Yu
Tiberius O Bonates
Vimla Gulabani
Joseph Azok
Gerard Hoehn
Peter L Hammer
Alison E Baird
King C Li
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2008
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/1472-6947-8-30

Other articles of this Issue 1/2008

BMC Medical Informatics and Decision Making 1/2008 Go to the issue